These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 19451945)

  • 1. Simulation of the passive infrared spectral signatures of bioaerosol and natural fog clouds immersed in the background atmosphere.
    Ligon D; Wetmore A; Gillespie P
    Opt Express; 2002 Sep; 10(18):909-19. PubMed ID: 19451945
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Standoff determination of the particle size and concentration of small optical depth clouds based on double scattering measurements: concept and experimental validation with bioaerosols.
    Roy G; Roy N
    Appl Opt; 2008 Mar; 47(9):1336-49. PubMed ID: 18709082
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vertical Profile of Cloud Optical Parameters Derived from Airborne Measurements Above, Inside and Below Clouds.
    Melnikova I; Gatebe CK
    J Quant Spectrosc Radiat Transf; 2018 Jul; 214():39-60. PubMed ID: 30467442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radiative transfer model for aerosols in infrared wavelengths for passive remote sensing applications.
    Ben-David A; Embury JF; Davidson CE
    Appl Opt; 2006 Sep; 45(26):6860-75. PubMed ID: 16926922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioprocess of Kosa bioaerosols: effect of ultraviolet radiation on airborne bacteria within Kosa (Asian dust).
    Kobayashi F; Maki T; Kakikawa M; Yamada M; Puspitasari F; Iwasaka Y
    J Biosci Bioeng; 2015 May; 119(5):570-9. PubMed ID: 25735592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radiative transfer model for aerosols at infrared wavelengths for passive remote sensing applications: revisited.
    Ben-David A; Davidson CE; Embury JF
    Appl Opt; 2008 Nov; 47(31):5924-37. PubMed ID: 19122735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Boundary layer aerosol characteristics at Mahabubnagar during CAIPEEX-IGOC: modeling the optical and radiative properties.
    Srivastava AK; Bisht DS; Tiwari S
    Sci Total Environ; 2014 Jan; 468-469():1093-102. PubMed ID: 24103256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Process-model simulations of cloud albedo enhancement by aerosols in the Arctic.
    Kravitz B; Wang H; Rasch PJ; Morrison H; Solomon AB
    Philos Trans A Math Phys Eng Sci; 2014 Dec; 372(2031):. PubMed ID: 25404677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulation study of the remote sensing of optical and microphysical properties of cirrus clouds from satellite IR measurements.
    Xu L; Zhang J
    Appl Opt; 1995 May; 34(15):2724-36. PubMed ID: 21052418
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extinction efficiency in the infrared (2-18 µm) of laboratory ice clouds: observations of scattering minima in the Christiansen bands of ice.
    Arnott WP; Dong YY; Hallett J
    Appl Opt; 1995 Jan; 34(3):541-51. PubMed ID: 20963149
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On-line measurement of fluorescent aerosols near an industrial zone in the Yangtze River Delta region using a wideband integrated bioaerosol spectrometer.
    Ma Y; Wang Z; Yang D; Diao Y; Wang W; Zhang H; Zhu W; Zheng J
    Sci Total Environ; 2019 Mar; 656():447-457. PubMed ID: 30522027
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of relative humidity on the broadband extinction performance of bioaerosol.
    Wang X; Hu Y; Gu Y; Zhao X; Chen X
    Opt Express; 2019 Aug; 27(17):23801-23813. PubMed ID: 31510280
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in column aerosol optical properties during extreme haze-fog episodes in January 2013 over urban Beijing.
    Yu X; Kumar KR; Lü R; Ma J
    Environ Pollut; 2016 Mar; 210():217-26. PubMed ID: 26735167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Black carbon solar absorption suppresses turbulence in the atmospheric boundary layer.
    Wilcox EM; Thomas RM; Praveen PS; Pistone K; Bender FA; Ramanathan V
    Proc Natl Acad Sci U S A; 2016 Oct; 113(42):11794-11799. PubMed ID: 27702889
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Passive remote sensing of pollutant clouds by Fourier-transform infrared spectrometry: signal-to-noise ratio as a function of spectral resolution.
    Harig R
    Appl Opt; 2004 Aug; 43(23):4603-10. PubMed ID: 15376439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of particle aspect ratio on the midinfrared extinction spectra of wavelength-sized ice crystals.
    Wagner R; Benz S; Möhler O; Saathoff H; Schnaiter M; Leisner T
    J Phys Chem A; 2007 Dec; 111(50):13003-22. PubMed ID: 18004822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detectability of planetary characteristics in disk-averaged spectra II: synthetic spectra and light-curves of earth.
    Tinetti G; Meadows VS; Crisp D; Kiang NY; Kahn BH; Bosc E; Fishbein E; Velusamy T; Turnbull M
    Astrobiology; 2006 Dec; 6(6):881-900. PubMed ID: 17155887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Depolarization ratio and attenuated backscatter for nine cloud types: analyses based on collocated CALIPSO lidar and MODIS measurements.
    Cho HM; Yang P; Kattawar GW; Nasiri SL; Hu Y; Minnis P; Trepte C; Winker D
    Opt Express; 2008 Mar; 16(6):3931-48. PubMed ID: 18542490
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Droplet size spectra and water-vapor concentration of laboratory water clouds: inversion of Fourier transform infrared (500-5000 cm(-1)) optical-depth measurement.
    Arnott WP; Schmitt C; Liu Y; Hallett J
    Appl Opt; 1997 Jul; 36(21):5205-16. PubMed ID: 18259335
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Measurement and analysis on complex refraction indices of pear pollen in infrared band].
    Li L; Hu YH; Gu YL; Chen W; Zhao YZ; Chen SJ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Jan; 35(1):89-92. PubMed ID: 25993826
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.