These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 19451949)

  • 41. Ray-wave duality of electromagnetic fields: a Feynman path integral approach to classical vectorial imaging.
    Babington J
    J Opt Soc Am A Opt Image Sci Vis; 2021 Jun; 38(6):817-826. PubMed ID: 34143151
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Manipulation of dielectric Rayleigh particles using highly focused elliptically polarized vector fields.
    Gu B; Xu D; Rui G; Lian M; Cui Y; Zhan Q
    Appl Opt; 2015 Sep; 54(27):8123-9. PubMed ID: 26406514
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Efficient propagation of the coherency matrix inspired by plenoptic field representations of nonparaxial Wigner functions.
    Wittkopp J; Petruccelli JC
    J Opt Soc Am A Opt Image Sci Vis; 2019 Dec; 36(12):2017-2024. PubMed ID: 31873374
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Probing vectorial near field of light: imaging theory and design principles of nanoprobes.
    Sun L; Bai B; Wang J
    Opt Express; 2018 Jul; 26(14):18644-18663. PubMed ID: 30114040
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Degree of polarization in near fields of thermal sources: effects of surface waves.
    Setälä T; Kaivola M; Friberg AT
    Phys Rev Lett; 2002 Mar; 88(12):123902. PubMed ID: 11909462
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Simulation of birefringence effects on the dominant transversal laser resonator mode caused by anisotropic crystals.
    Asoubar D; Zhang S; Wyrowski F
    Opt Express; 2015 Jun; 23(11):13848-65. PubMed ID: 26072756
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Propagation of electromagnetic fields between non-parallel planes: a fully vectorial formulation and an efficient implementation.
    Zhang S; Asoubar D; Hellmann C; Wyrowski F
    Appl Opt; 2016 Jan; 55(3):529-38. PubMed ID: 26835928
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fast focus field calculations.
    Leutenegger M; Rao R; Leitgeb RA; Lasser T
    Opt Express; 2006 Nov; 14(23):11277-91. PubMed ID: 19529543
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Vectorial structure of far field of cylindrically polarized beams diffracted at a circular aperture.
    Jia X; Wang Y
    Opt Lett; 2011 Jan; 36(2):295-7. PubMed ID: 21263531
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Hyperboloid structures formed by polarization singularities in coherent vector fields with longitudinal-transverse coupling.
    Chen YF; Lu TH; Huang KF
    Phys Rev Lett; 2006 Dec; 97(23):233903. PubMed ID: 17280204
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Bio-effects of extremely low frequency electromagnetic fields (60 Hz.) on the healing of corneal epithelial wound: an in vitro study.
    Basu PK; Menon IA; Chipman M; Avaria M; Hasany SM; Wiltshire JD
    Lens Eye Toxic Res; 1989; 6(1-2):43-58. PubMed ID: 2488033
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nonparaxial analyses of radially polarized beams diffracted at a circular aperture.
    Jia X; Wang Y; Li B
    Opt Express; 2010 Mar; 18(7):7064-75. PubMed ID: 20389727
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Ray picture of polarization and coherence in a Young interferometer.
    Luis A
    J Opt Soc Am A Opt Image Sci Vis; 2006 Nov; 23(11):2855-60. PubMed ID: 17047713
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Efficient semi-analytical propagation techniques for electromagnetic fields.
    Asoubar D; Zhang S; Wyrowski F; Kuhn M
    J Opt Soc Am A Opt Image Sci Vis; 2014 Mar; 31(3):591-602. PubMed ID: 24690657
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Experimental generation of complex optical fields for diffraction limited optical focus with purely transverse spin angular momentum.
    Chen J; Wan C; Kong L; Zhan Q
    Opt Express; 2017 Apr; 25(8):8966-8974. PubMed ID: 28437969
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Vectorial self-diffraction effect in optically Kerr medium.
    Gu B; Ye F; Lou K; Li Y; Chen J; Wang HT
    Opt Express; 2012 Jan; 20(1):149-57. PubMed ID: 22274338
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Propagation of generalized vector Helmholtz-Gauss beams through paraxial optical systems.
    Hernandez-Aranda RI; Gutiérrez-Vega JC; Guizar-Sicairos M; Bandres MA
    Opt Express; 2006 Oct; 14(20):8974-88. PubMed ID: 19529276
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Exact axial electromagnetic field for vectorial Gaussian and flattened Gaussian boundary distributions.
    Borghi R; Ciattoni A; Santarsiero M
    J Opt Soc Am A Opt Image Sci Vis; 2002 Jun; 19(6):1207-11. PubMed ID: 12049359
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Polarization properties of stochastic electromagnetic beams modulated by a wavefront-folding interferometer.
    Guo M; Zhao D
    Opt Express; 2018 Apr; 26(7):8581-8593. PubMed ID: 29715823
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Polarization-induced spectral changes on propagation of stochastic electromagnetic beams.
    Pu J; Korotkova O; Wolf E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 2):056610. PubMed ID: 17677189
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.