These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 19452003)

  • 1. Numerical analysis of vectorial two-beam coupling in photorefractive materials.
    Passaro V; Marseglia D
    Opt Express; 2002 Dec; 10(24):1384-90. PubMed ID: 19452003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancement of Two-Wave Coupling in a Ce:KNSBN Crystal with Optimum Polarization of the Writing Beams.
    Liang BL; Wang Z; Cartwright CM; Gillespie WA; Ding MS; Zhang H
    Appl Opt; 2001 Jul; 40(20):3359-64. PubMed ID: 18360360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theory of photorefractive vectorial wave coupling in cubic crystals.
    Sturman BI; Podivilov EV; Ringhofer KH; Shamonina E; Kamenov VP; Nippolainen E; Prokofiev VV; Kamshilin AA
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Sep; 60(3):3332-52. PubMed ID: 11970148
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Holographic recording in specially doped lithium niobate crystals.
    McMillen D; Hudson T; Wagner J; Singleton J
    Opt Express; 1998 Jun; 2(12):491-502. PubMed ID: 19381220
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deterministic beam fanning in Fe-doped stoichiometric lithium niobate crystals.
    Solanki S; Xu X; Chong TC
    Appl Opt; 2005 Aug; 44(23):4922-9. PubMed ID: 16114530
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vectorial two-beam coupling with arbitrary shifted photorefractive gratings: an analytical approach.
    Khomenko AV; Rocha-Mendoza I
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 2):066615. PubMed ID: 15697534
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solutions for vectorial beam coupling under ac field in cubic photorefractive crystals.
    Sturman BI; Filippov OS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Sep; 68(3 Pt 2):036613. PubMed ID: 14524918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ion-beam manipulation of the photorefractive properties of strontium barium niobate planar waveguides.
    Robertson EE; Eason RW; Kaczmarek M; Chandler PJ; Huang X
    Opt Lett; 1996 May; 21(9):641-3. PubMed ID: 19876110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Major improvements of the photorefractive and photovoltaic properties in potassium niobate.
    Evans DR; Cook G; Carns JL; Saleh MA; Basun SA; Seim JM; Mizell GJ
    Opt Lett; 2006 Jan; 31(1):89-91. PubMed ID: 16419887
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photorefractive properties of iron-doped stoichiometric lithium niobate.
    Furukawa Y; Kitamura K; Ji Y; Montemezzani G; Zgonik M; Medrano C; Günter P
    Opt Lett; 1997 Apr; 22(8):501-3. PubMed ID: 18183247
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photorefractive dark conductivity in Cr-doped strontium barium niobate.
    Sayano K; Rakuljic GA; Agranat A; Yariv A; Neurgaonkar RR
    Opt Lett; 1989 May; 14(9):459-61. PubMed ID: 19749952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contra-directional two-beam coupling by use of a single input beam in an iron-doped lithium niobate multimode fiber.
    Evans DR; Saleh MA; Bunning TJ; Lu L; Meltzer RS; Yen WM; Guha S
    Appl Opt; 2002 Nov; 41(32):6890-3. PubMed ID: 12440544
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of photorefractive optical damage in lithium niobate: application to planar waveguides.
    Villarroel J; Carnicero J; Luedtke F; Carrascosa M; García-Cabañes A; Cabrera JM; Alcazar A; Ramiro B
    Opt Express; 2010 Sep; 18(20):20852-61. PubMed ID: 20940980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simple methods of measuring the net photorefractive phase shift and coupling constant.
    Hofneister R; Yariv A; Kewitsch A; Yagi S
    Opt Lett; 1993 Apr; 18(7):488-90. PubMed ID: 19802176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved ultraviolet photorefractive properties of vanadium-doped lithium niobate crystals.
    Dong Y; Liu S; Li W; Kong Y; Chen S; Xu J
    Opt Lett; 2011 May; 36(10):1779-81. PubMed ID: 21593888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simple optical method for determination of crystal orientation in photorefractive crystals.
    Qu D; Guo R; Liu S; Liu Z; Gao Y
    Appl Opt; 2006 Aug; 45(24):6218-22. PubMed ID: 16892127
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High photorefractive gain in two-beam coupling with moving fringes in GaAs:Cr crystals.
    Imbert B; Rajbenbach H; Mallick S; Herriau JP; Huignard JP
    Opt Lett; 1988 Apr; 13(4):327-9. PubMed ID: 19745888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bidirectional vectorial light amplification in cubic crystals with unshifted photorefractive gratings.
    Rocha-Mendoza I; Khomenko AV
    Opt Lett; 2002 Aug; 27(16):1448-50. PubMed ID: 18026475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wave mixing and beam profile control in a photorefractive waveguide.
    Yu W; Królikowski W; Luther-Davies B; Webster M; Austin M
    Opt Lett; 1995 Mar; 20(6):563-5. PubMed ID: 19859256
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theory of critical enhancement of photorefractive beam coupling.
    Podivilov EV; Sturman BI; Gorkunov MV; Kamenov VP; Ringhofer KH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Apr; 65(4 Pt 2B):046623. PubMed ID: 12006063
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.