BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 19452129)

  • 1. A new minimal-stress freely-moving rat model for preclinical studies on intranasal administration of CNS drugs.
    Stevens J; Suidgeest E; van der Graaf PH; Danhof M; de Lange EC
    Pharm Res; 2009 Aug; 26(8):1911-7. PubMed ID: 19452129
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Delivery of 125I-cobrotoxin after intranasal administration to the brain: a microdialysis study in freely moving rats.
    Li F; Feng J; Cheng Q; Zhu W; Jin Y
    Int J Pharm; 2007 Jan; 328(2):161-7. PubMed ID: 17049426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct transport of VEGF from the nasal cavity to brain.
    Yang JP; Liu HJ; Cheng SM; Wang ZL; Cheng X; Yu HX; Liu XF
    Neurosci Lett; 2009 Jan; 449(2):108-11. PubMed ID: 18996442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of direct transport pathways of glycine receptor antagonists and an angiotensin antagonist from the nasal cavity to the central nervous system in the rat model.
    Charlton ST; Whetstone J; Fayinka ST; Read KD; Illum L; Davis SS
    Pharm Res; 2008 Jul; 25(7):1531-43. PubMed ID: 18293062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct nose-brain transport of benzoylecgonine following intranasal administration in rats.
    Chow HH; Anavy N; Villalobos A
    J Pharm Sci; 2001 Nov; 90(11):1729-35. PubMed ID: 11745730
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uptake of fluorescein isothiocyanate-labelled dextran into the CSF after intranasal and intravenous administration to rats.
    in 't Veen JP; van den Berg MP; Romeijn SG; Verhoef JC; Merkus FW
    Eur J Pharm Biopharm; 2005 Sep; 61(1-2):27-31. PubMed ID: 15893918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uptake of estradiol or progesterone into the CSF following intranasal and intravenous delivery in rats.
    van den Berg MP; Verhoef JC; Romeijn SG; Merkus FW
    Eur J Pharm Biopharm; 2004 Jul; 58(1):131-5. PubMed ID: 15207546
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Evaluation of brain-targeted trendence of scutellarin nasal administration].
    Shi S; Wu J; Dai W; Li C; Ge W
    Zhongguo Zhong Yao Za Zhi; 2010 Sep; 35(18):2453-6. PubMed ID: 21141499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasma and cerebrospinal fluid pharmacokinetics of select chemotherapeutic agents following intranasal delivery in a non-human primate model.
    League-Pascual JC; Lester-McCully CM; Shandilya S; Ronner L; Rodgers L; Cruz R; Peer CJ; Figg WD; Warren KE
    J Neurooncol; 2017 May; 132(3):401-407. PubMed ID: 28290002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Demonstration of Direct Nose-to-Brain Transport of Unbound HIV-1 Replication Inhibitor DB213 Via Intranasal Administration by Pharmacokinetic Modeling.
    Wang Q; Zhang Y; Wong CH; Edwin Chan HY; Zuo Z
    AAPS J; 2017 Dec; 20(1):23. PubMed ID: 29282567
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brain microdialysate, CSF and plasma pharmacokinetics of ligustrazine hydrochloride in rats after intranasal and intravenous administration.
    Wang Q; Tang Z; Zhang W
    Biopharm Drug Dispos; 2013 Oct; 34(7):417-22. PubMed ID: 23868712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Preparation of huperzine A nasal in situ gel and evaluation of its brain targeting following intranasal administration].
    Tao T; Zhao Y; Yue P; Dong WX; Chen QH
    Yao Xue Xue Bao; 2006 Nov; 41(11):1104-10. PubMed ID: 17262956
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intranasal drug targeting of hypocretin-1 (orexin-A) to the central nervous system.
    Dhuria SV; Hanson LR; Frey WH
    J Pharm Sci; 2009 Jul; 98(7):2501-15. PubMed ID: 19025760
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intranasal delivery of ciprofloxacin to rats: A topical approach using a thermoreversible in situ gel.
    Sousa J; Alves G; Oliveira P; Fortuna A; Falcão A
    Eur J Pharm Sci; 2017 Jan; 97():30-37. PubMed ID: 27810560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration.
    Thorne RG; Pronk GJ; Padmanabhan V; Frey WH
    Neuroscience; 2004; 127(2):481-96. PubMed ID: 15262337
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Profiles of methotrexate in blood and CSF following intranasal and intravenous administration to rats.
    Wang F; Jiang X; Lu W
    Int J Pharm; 2003 Sep; 263(1-2):1-7. PubMed ID: 12954175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brain penetration and anticonvulsant efficacy of intranasal phenobarbital in rats.
    Czapp M; Bankstahl JP; Zibell G; Potschka H
    Epilepsia; 2008 Jul; 49(7):1142-50. PubMed ID: 18363707
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydroxocobalamin uptake into the cerebrospinal fluid after nasal and intravenous delivery in rats and humans.
    Van den Berg MP; Merkus P; Romeijn SG; Verhoef JC; Merkus FW
    J Drug Target; 2003 Jul; 11(6):325-31. PubMed ID: 14668053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative pharmacokinetics of single doses of doxylamine succinate following intranasal, oral and intravenous administration in rats.
    Pelser A; Müller DG; du Plessis J; du Preez JL; Goosen C
    Biopharm Drug Dispos; 2002 Sep; 23(6):239-44. PubMed ID: 12214324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mathematical Modeling and Simulation to Investigate the CNS Transport Characteristics of Nanoemulsion-Based Drug Delivery Following Intranasal Administration.
    Kadakia E; Bottino D; Amiji M
    Pharm Res; 2019 Mar; 36(5):75. PubMed ID: 30923914
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.