These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 19452205)

  • 1. A comparison of data sets varying in spatial accuracy used to predict the occurrence of wildlife-vehicle collisions.
    Gunson KE; Clevenger AP; Ford AT; Bissonette JA; Hardy A
    Environ Manage; 2009 Aug; 44(2):268-77. PubMed ID: 19452205
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial wildlife-vehicle collision models: a review of current work and its application to transportation mitigation projects.
    Gunson KE; Mountrakis G; Quackenbush LJ
    J Environ Manage; 2011 Apr; 92(4):1074-82. PubMed ID: 21190788
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monitoring wildlife-vehicle collisions in the information age: how smartphones can improve data collection.
    Olson DD; Bissonette JA; Cramer PC; Green AD; Davis ST; Jackson PJ; Coster DC
    PLoS One; 2014; 9(6):e98613. PubMed ID: 24897502
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differences in Spatiotemporal Patterns of Vehicle Collisions with Wildlife and Livestock.
    Creech TG; Fairbank ER; Clevenger AP; Callahan AR; Ament RJ
    Environ Manage; 2019 Dec; 64(6):736-745. PubMed ID: 31679060
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On reliable identification of factors influencing wildlife-vehicle collisions along roads.
    Bíl M; Andrášik R; Duľa M; Sedoník J
    J Environ Manage; 2019 May; 237():297-304. PubMed ID: 30807975
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Behavioural reactions to oncoming vehicles as a crucial aspect of wildlife-vehicle collision risk in three common wildlife species.
    Brieger F; Kämmerle JL; Hagen R; Suchant R
    Accid Anal Prev; 2022 Apr; 168():106564. PubMed ID: 35183917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting wildlife road-crossing probability from roadkill data using occupancy-detection models.
    Santos RAL; Mota-Ferreira M; Aguiar LMS; Ascensão F
    Sci Total Environ; 2018 Nov; 642():629-637. PubMed ID: 29909330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of wildlife carcass underreporting on KDE+ hotspots identification and importance.
    Bíl M; Andrášik R
    J Environ Manage; 2020 Dec; 275():111254. PubMed ID: 32841791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The impact of the COVID-19 lockdowns on wildlife-vehicle collisions in the UK.
    Raymond S; Spencer M; Chadwick EA; Madden JR; Perkins SE
    J Anim Ecol; 2023 Jun; 92(6):1244-1255. PubMed ID: 37072892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and application of an aerosol screening model for size-resolved urban aerosols.
    Stanier CO; Lee SR;
    Res Rep Health Eff Inst; 2014 Jun; (179):3-79. PubMed ID: 25145039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Canadian wildlife-vehicle collisions: An examination of knowledge and behavior for collision prevention.
    Vanlaar WGM; Barrett H; Hing MM; Brown SW; Robertson RD
    J Safety Res; 2019 Feb; 68():181-186. PubMed ID: 30876509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wildlife mortality risk posed by high and low traffic roads.
    Denneboom D; Bar-Massada A; Shwartz A
    Conserv Biol; 2024 Apr; 38(2):e14159. PubMed ID: 37551769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling road traffic safety based on point patterns of wildlife-vehicle collisions.
    Llagostera P; Comas C; López N
    Sci Total Environ; 2022 Nov; 846():157237. PubMed ID: 35817101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An approach toward understanding wildlife-vehicle collisions.
    Litvaitis JA; Tash JP
    Environ Manage; 2008 Oct; 42(4):688-97. PubMed ID: 18427884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of ecological passages along road networks within the Mediterranean forest using GIS-based multi criteria evaluation approach.
    Gülci S; Akay AE
    Environ Monit Assess; 2015 Dec; 187(12):779. PubMed ID: 26620952
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluating heterogeneity in indoor and outdoor air pollution using land-use regression and constrained factor analysis.
    Levy JI; Clougherty JE; Baxter LK; Houseman EA; Paciorek CJ;
    Res Rep Health Eff Inst; 2010 Dec; (152):5-80; discussion 81-91. PubMed ID: 21409949
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wildlife roadkill in Southwestern Ethiopia: Hotspots, drivers, and victim species.
    Gutema TM; Mersha A; Aticho A; Gemeda DO; Diriba S; Alemu T; Gemechu D; Habtamu T; Dinsa DT; Tsegaye D; Stenseth NC
    Heliyon; 2023 Sep; 9(9):e19783. PubMed ID: 37809595
    [TBL] [Abstract][Full Text] [Related]  

  • 18. COVID-19 related travel restrictions prevented numerous wildlife deaths on roads: A comparative analysis of results from 11 countries.
    Bíl M; Andrášik R; Cícha V; Arnon A; Kruuse M; Langbein J; Náhlik A; Niemi M; Pokorny B; Colino-Rabanal VJ; Rolandsen CM; Seiler A
    Biol Conserv; 2021 Apr; 256():109076. PubMed ID: 34580545
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Consistent patterns of vehicle collision risk for six mammal species.
    Visintin C; van der Ree R; McCarthy MA
    J Environ Manage; 2017 Oct; 201():397-406. PubMed ID: 28704730
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A spatiotemporal risk prediction of wildlife-vehicle collisions using machine learning for dynamic warnings.
    Pagany R
    J Safety Res; 2022 Dec; 83():269-281. PubMed ID: 36481018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.