These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 19452600)
21. Removal of the N-terminal hexapeptide from human beta2-microglobulin facilitates protein aggregation and fibril formation. Esposito G; Michelutti R; Verdone G; Viglino P; Hernández H; Robinson CV; Amoresano A; Dal Piaz F; Monti M; Pucci P; Mangione P; Stoppini M; Merlini G; Ferri G; Bellotti V Protein Sci; 2000 May; 9(5):831-45. PubMed ID: 10850793 [TBL] [Abstract][Full Text] [Related]
22. A native to amyloidogenic transition regulated by a backbone trigger. Eakin CM; Berman AJ; Miranker AD Nat Struct Mol Biol; 2006 Mar; 13(3):202-8. PubMed ID: 16491088 [TBL] [Abstract][Full Text] [Related]
23. Amyloid formation under physiological conditions proceeds via a native-like folding intermediate. Jahn TR; Parker MJ; Homans SW; Radford SE Nat Struct Mol Biol; 2006 Mar; 13(3):195-201. PubMed ID: 16491092 [TBL] [Abstract][Full Text] [Related]
24. Characterization of two distinct beta2-microglobulin unfolding intermediates that may lead to amyloid fibrils of different morphology. Armen RS; Daggett V Biochemistry; 2005 Dec; 44(49):16098-107. PubMed ID: 16331970 [TBL] [Abstract][Full Text] [Related]
25. Proline Residues as Switches in Conformational Changes Leading to Amyloid Fibril Formation. Taler-Verčič A; Hasanbašić S; Berbić S; Stoka V; Turk D; Žerovnik E Int J Mol Sci; 2017 Mar; 18(3):. PubMed ID: 28272335 [TBL] [Abstract][Full Text] [Related]
26. Possible mechanisms of polyphosphate-induced amyloid fibril formation of β Zhang CM; Yamaguchi K; So M; Sasahara K; Ito T; Yamamoto S; Narita I; Kardos J; Naiki H; Goto Y Proc Natl Acad Sci U S A; 2019 Jun; 116(26):12833-12838. PubMed ID: 31182591 [TBL] [Abstract][Full Text] [Related]
27. Kinetic coupling of folding and prolyl isomerization of beta2-microglobulin studied by mutational analysis. Sakata M; Chatani E; Kameda A; Sakurai K; Naiki H; Goto Y J Mol Biol; 2008 Oct; 382(5):1242-55. PubMed ID: 18708068 [TBL] [Abstract][Full Text] [Related]
28. Molecular interactions in the formation and deposition of beta2-microglobulin-related amyloid fibrils. Naiki H; Yamamoto S; Hasegawa K; Yamaguchi I; Goto Y; Gejyo F Amyloid; 2005 Mar; 12(1):15-25. PubMed ID: 16076607 [TBL] [Abstract][Full Text] [Related]
29. The most pathogenic transthyretin variant, L55P, forms amyloid fibrils under acidic conditions and protofilaments under physiological conditions. Lashuel HA; Wurth C; Woo L; Kelly JW Biochemistry; 1999 Oct; 38(41):13560-73. PubMed ID: 10521263 [TBL] [Abstract][Full Text] [Related]
30. Amyloid nucleation triggered by agitation of beta2-microglobulin under acidic and neutral pH conditions. Sasahara K; Yagi H; Sakai M; Naiki H; Goto Y Biochemistry; 2008 Feb; 47(8):2650-60. PubMed ID: 18211100 [TBL] [Abstract][Full Text] [Related]
31. A covalent homodimer probing early oligomers along amyloid aggregation. Halabelian L; Relini A; Barbiroli A; Penco A; Bolognesi M; Ricagno S Sci Rep; 2015 Sep; 5():14651. PubMed ID: 26420657 [TBL] [Abstract][Full Text] [Related]
32. Increased β-Sheet Dynamics and D-E Loop Repositioning Are Necessary for Cu(II)-Induced Amyloid Formation by β-2-Microglobulin. Borotto NB; Zhang Z; Dong J; Burant B; Vachet RW Biochemistry; 2017 Feb; 56(8):1095-1104. PubMed ID: 28168880 [TBL] [Abstract][Full Text] [Related]
33. A systematic study of the effect of physiological factors on beta2-microglobulin amyloid formation at neutral pH. Myers SL; Jones S; Jahn TR; Morten IJ; Tennent GA; Hewitt EW; Radford SE Biochemistry; 2006 Feb; 45(7):2311-21. PubMed ID: 16475820 [TBL] [Abstract][Full Text] [Related]
34. A single disulfide bond differentiates aggregation pathways of beta2-microglobulin. Chen Y; Dokholyan NV J Mol Biol; 2005 Nov; 354(2):473-82. PubMed ID: 16242719 [TBL] [Abstract][Full Text] [Related]
35. Partially unfolded states of beta(2)-microglobulin and amyloid formation in vitro. McParland VJ; Kad NM; Kalverda AP; Brown A; Kirwin-Jones P; Hunter MG; Sunde M; Radford SE Biochemistry; 2000 Aug; 39(30):8735-46. PubMed ID: 10913285 [TBL] [Abstract][Full Text] [Related]
36. Conformation of beta 2-microglobulin amyloid fibrils analyzed by reduction of the disulfide bond. Hong DP; Gozu M; Hasegawa K; Naiki H; Goto Y J Biol Chem; 2002 Jun; 277(24):21554-60. PubMed ID: 11943769 [TBL] [Abstract][Full Text] [Related]
37. Co-fibrillogenesis of Wild-type and D76N β2-Microglobulin: THE CRUCIAL ROLE OF FIBRILLAR SEEDS. Natalello A; Mangione PP; Giorgetti S; Porcari R; Marchese L; Zorzoli I; Relini A; Ami D; Faravelli G; Valli M; Stoppini M; Doglia SM; Bellotti V; Raimondi S J Biol Chem; 2016 Apr; 291(18):9678-89. PubMed ID: 26921323 [TBL] [Abstract][Full Text] [Related]
38. Proline isomerization effects in the amyloidogenic protein β Maschio MC; Fregoni J; Molteni C; Corni S Phys Chem Chem Phys; 2021 Jan; 23(1):356-367. PubMed ID: 33346272 [TBL] [Abstract][Full Text] [Related]
39. Beta(2)-microglobulin and its deamidated variant, N17D form amyloid fibrils with a range of morphologies in vitro. Kad NM; Thomson NH; Smith DP; Smith DA; Radford SE J Mol Biol; 2001 Oct; 313(3):559-71. PubMed ID: 11676539 [TBL] [Abstract][Full Text] [Related]
40. Amyloid-forming peptides from beta2-microglobulin-Insights into the mechanism of fibril formation in vitro. Jones S; Manning J; Kad NM; Radford SE J Mol Biol; 2003 Jan; 325(2):249-57. PubMed ID: 12488093 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]