These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 19452990)

  • 1. The effects of the modulated magnetic fields on electronic structures of graphene nanoribbons.
    Wu JY; Chiu YH; Lien JY; Lin MF
    J Nanosci Nanotechnol; 2009 May; 9(5):3193-200. PubMed ID: 19452990
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetic and quantum confinement effects on electronic and optical properties of graphene ribbons.
    Huang YC; Chang CP; Lin MF
    Nanotechnology; 2007 Dec; 18(49):495401. PubMed ID: 20442470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation effects on Landau levels in a monolayer graphene.
    Ho JH; Lai YH; Chiu YH; Lin MF
    Nanotechnology; 2008 Jan; 19(3):035712. PubMed ID: 21817597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Curvature effects on electronic properties of armchair graphene nanoribbons without passivation.
    Chang SL; Wu BR; Yang PH; Lin MF
    Phys Chem Chem Phys; 2012 Dec; 14(47):16409-14. PubMed ID: 23132378
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electronic properties of nanotube-ribbon hybrid systems.
    Li TS; Chang SC; Lien JY; Lin MF
    Nanotechnology; 2008 Mar; 19(10):105703. PubMed ID: 21817711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlation between energy band transition and optical absorption spectrum in bilayer armchair graphene nanoribbons.
    Nguyen LT; Ngo VC; Thai TL; Phan DT; Nguyen TA; Tran VT; Vu TT; Phan TK
    J Phys Condens Matter; 2023 Jun; 35(38):. PubMed ID: 37285859
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adatom bond-induced geometric and electronic properties of passivated armchair graphene nanoribbons.
    Lin YT; Chung HC; Yang PH; Lin SY; Lin MF
    Phys Chem Chem Phys; 2015 Jul; 17(25):16545-52. PubMed ID: 26051862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conductance of carbon nanotubes in a transverse electric field and an arbitrary magnetic field.
    Li TS; Lin MF
    Nanotechnology; 2006 Nov; 17(22):5632-8. PubMed ID: 21727335
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electronic band structures of graphene nanoribbons with self-passivating edge reconstructions.
    Tung Nguyen L; Huy Pham C; Lien Nguyen V
    J Phys Condens Matter; 2011 Jul; 23(29):295503. PubMed ID: 21737866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-orbital tight binding model for the electronic and optical properties of armchair graphene nanoribbons in the presence of a periodic potential.
    Hieu NN; Shih PH; Do TN; Nguyen CV
    J Phys Condens Matter; 2021 Feb; 33(15):. PubMed ID: 33482663
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural and electronic properties of graphene nanotube-nanoribbon hybrids.
    Lee CH; Yang CK; Lin MF; Chang CP; Su WS
    Phys Chem Chem Phys; 2011 Mar; 13(9):3925-31. PubMed ID: 21210053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of edge magnetism on the Kohn anomalies of zigzag graphene nanoribbons.
    Culchac FJ; Capaz RB
    Nanotechnology; 2016 Feb; 27(6):065707. PubMed ID: 26762781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-energy electronic properties of the AB-stacked few-layer graphites.
    Lu CL; Chang CP; Huang YC; Lu JM; Hwang CC; Lin MF
    J Phys Condens Matter; 2006 Jul; 18(26):5849-59. PubMed ID: 21690801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intense Laser Pulse Interaction With Graphene and Graphene Ribbons.
    Faisal FHM
    Front Chem; 2022; 10():859405. PubMed ID: 35548673
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of a modulated electric field on the optical absorption spectra in a single-layer graphene.
    Chiu YH; Ho JH; Ho YH; Chuu DS; Lin MF
    J Nanosci Nanotechnol; 2009 Nov; 9(11):6579-86. PubMed ID: 19908568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electronic and optical properties of graphene nanoribbons in external fields.
    Chung HC; Chang CP; Lin CY; Lin MF
    Phys Chem Chem Phys; 2016 Mar; 18(11):7573-616. PubMed ID: 26744847
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Landau subband and Landau level properties of AA-stacked graphene superlattice.
    Chen RB; Chiu YH
    J Nanosci Nanotechnol; 2012 Mar; 12(3):2557-66. PubMed ID: 22755090
    [TBL] [Abstract][Full Text] [Related]  

  • 18. First-principles study of the triwing graphene nanoribbons: junction-dependent electronic structures and electric field modulations.
    Ding Y; Wang Y
    Phys Chem Chem Phys; 2012 Feb; 14(6):2040-9. PubMed ID: 22234604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlled Growth of 1D MoSe
    Cheng F; Xu H; Xu W; Zhou P; Martin J; Loh KP
    Nano Lett; 2017 Feb; 17(2):1116-1120. PubMed ID: 28090772
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electronic and transport properties and physical field coupling effects for net-Y nanoribbons.
    Hu JK; Zhang ZH; Fan ZQ; Zhou RL
    Nanotechnology; 2019 Nov; 30(48):485703. PubMed ID: 31426048
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.