These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 19452990)

  • 21. Edge-Dependent Electronic and Magnetic Characteristics of Freestanding
    Izadi Vishkayi S; Bagheri Tagani M
    Nanomicro Lett; 2018; 10(1):14. PubMed ID: 30393663
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interplay of orbital hopping and perpendicular magnetic field in anisotropic phase transitions for Bernal bilayer graphene and hexagonal boron-nitride.
    T T Le P; Davoudiniya M; Yarmohammadi M
    Phys Chem Chem Phys; 2018 Dec; 21(1):238-245. PubMed ID: 30519687
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electronic structure of BSb defective monolayers and nanoribbons.
    Ersan F; Gökoğlu G; Aktürk E
    J Phys Condens Matter; 2014 Aug; 26(32):325303. PubMed ID: 25049113
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Band gaps in jagged and straight graphene nanoribbons tunable by an external electric field.
    Saroka VA; Batrakov KG; Demin VA; Chernozatonskii LA
    J Phys Condens Matter; 2015 Apr; 27(14):145305. PubMed ID: 25791088
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electric-field-induced destruction of quasi-Landau levels in bilayer graphene nanoribbons.
    Chung HC; Su WP; Lin MF
    Phys Chem Chem Phys; 2013 Jan; 15(3):868-75. PubMed ID: 23202884
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electronic and magnetic properties and structural stability of BeO sheet and nanoribbons.
    Wu W; Lu P; Zhang Z; Guo W
    ACS Appl Mater Interfaces; 2011 Dec; 3(12):4787-95. PubMed ID: 22039765
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Room-temperature magnetic order on zigzag edges of narrow graphene nanoribbons.
    Magda GZ; Jin X; Hagymási I; Vancsó P; Osváth Z; Nemes-Incze P; Hwang C; Biró LP; Tapasztó L
    Nature; 2014 Oct; 514(7524):608-11. PubMed ID: 25355361
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Accurate prediction of the electronic properties of low-dimensional graphene derivatives using a screened hybrid density functional.
    Barone V; Hod O; Peralta JE; Scuseria GE
    Acc Chem Res; 2011 Apr; 44(4):269-79. PubMed ID: 21388164
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modulation of electronic and magnetic properties in InSe nanoribbons: edge effect.
    Wu M; Shi JJ; Zhang M; Ding YM; Wang H; Cen YL; Guo WH; Pan SH; Zhu YH
    Nanotechnology; 2018 May; 29(20):205708. PubMed ID: 29504514
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Peculiar Magnetotransport Features of Ultranarrow Graphene Nanoribbons under High Magnetic Field.
    Shen H; Cresti A; Escoffier W; Shi Y; Wang X; Raquet B
    ACS Nano; 2016 Feb; 10(2):1853-8. PubMed ID: 26649888
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tuning of graphene nanoribbon Landau levels by a nanotube.
    Li TS; Lin MF; Chang SC
    J Phys Condens Matter; 2009 Oct; 21(43):435302. PubMed ID: 21832434
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modulating the bandgaps of graphdiyne nanoribbons by transverse electric fields.
    Kang J; Wu F; Li J
    J Phys Condens Matter; 2012 Apr; 24(16):165301. PubMed ID: 22447843
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Metal doped armchair graphene nanoribbons: electronic structure, carrier mobility and device properties.
    Han JN; He X; Fan ZQ; Zhang ZH
    Phys Chem Chem Phys; 2019 Jan; 21(4):1830-1840. PubMed ID: 30629061
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electronic structure of atomically precise graphene nanoribbons.
    Ruffieux P; Cai J; Plumb NC; Patthey L; Prezzi D; Ferretti A; Molinari E; Feng X; Müllen K; Pignedoli CA; Fasel R
    ACS Nano; 2012 Aug; 6(8):6930-5. PubMed ID: 22853456
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Feature-Rich Geometric and Electronic Properties of Carbon Nanoscrolls.
    Lin SY; Chang SL; Chiang CR; Li WB; Liu HY; Lin MF
    Nanomaterials (Basel); 2021 May; 11(6):. PubMed ID: 34067250
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electronic and magnetic properties of armchair and zigzag graphene nanoribbons.
    Owens FJ
    J Chem Phys; 2008 May; 128(19):194701. PubMed ID: 18500880
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Low-frequency electronic and optical properties of rhombohedral graphite.
    Chiu CW; Huang YC; Chen SC; Lin MF; Shyu FL
    Phys Chem Chem Phys; 2011 Apr; 13(13):6036-42. PubMed ID: 21336387
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inducing abundant magnetic phases and enhancing magnetic stability by edge modifications and physical regulations for NiI
    Yi Y; Han J; Li Z; Cao S; Zhang Z
    Phys Chem Chem Phys; 2024 Feb; 26(6):5045-5058. PubMed ID: 38258528
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Band gap engineering of silicene zigzag nanoribbons with perpendicular electric fields: a theoretical study.
    Liang Y; Wang V; Mizuseki H; Kawazoe Y
    J Phys Condens Matter; 2012 Nov; 24(45):455302. PubMed ID: 23085744
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electronic properties of four typical zigzag-edged graphyne nanoribbons.
    Yu G; Liu Z; Gao W; Zheng Y
    J Phys Condens Matter; 2013 Jul; 25(28):285502. PubMed ID: 23793076
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.