BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

449 related articles for article (PubMed ID: 19453518)

  • 1. Receptor-mediated activation of gastric vagal afferents by glucagon-like peptide-1 in the rat.
    Bucinskaite V; Tolessa T; Pedersen J; Rydqvist B; Zerihun L; Holst JJ; Hellström PM
    Neurogastroenterol Motil; 2009 Sep; 21(9):978-e78. PubMed ID: 19453518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The common hepatic branch of the vagus is not required to mediate the glycemic and food intake suppressive effects of glucagon-like-peptide-1.
    Hayes MR; Kanoski SE; De Jonghe BC; Leichner TM; Alhadeff AL; Fortin SM; Arnold M; Langhans W; Grill HJ
    Am J Physiol Regul Integr Comp Physiol; 2011 Nov; 301(5):R1479-85. PubMed ID: 21849636
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Localization and activation of glucagon-like peptide-2 receptors on vagal afferents in the rat.
    Nelson DW; Sharp JW; Brownfield MS; Raybould HE; Ney DM
    Endocrinology; 2007 May; 148(5):1954-62. PubMed ID: 17234710
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The hepatic vagal reception of intraportal GLP-1 is via receptor different from the pancreatic GLP-1 receptor.
    Nishizawa M; Nakabayashi H; Kawai K; Ito T; Kawakami S; Nakagawa A; Niijima A; Uchida K
    J Auton Nerv Syst; 2000 Apr; 80(1-2):14-21. PubMed ID: 10742535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glucagon-like peptide-1 inhibits gastric emptying via vagal afferent-mediated central mechanisms.
    Imeryüz N; Yeğen BC; Bozkurt A; Coşkun T; Villanueva-Peñacarrillo ML; Ulusoy NB
    Am J Physiol; 1997 Oct; 273(4):G920-7. PubMed ID: 9357836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Peripheral and central GLP-1 receptor populations mediate the anorectic effects of peripherally administered GLP-1 receptor agonists, liraglutide and exendin-4.
    Kanoski SE; Fortin SM; Arnold M; Grill HJ; Hayes MR
    Endocrinology; 2011 Aug; 152(8):3103-12. PubMed ID: 21693680
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cholecystokinin regulates satiation independently of the abdominal vagal nerve in a pig model of total subdiaphragmatic vagotomy.
    Ripken D; van der Wielen N; van der Meulen J; Schuurman T; Witkamp RF; Hendriks HF; Koopmans SJ
    Physiol Behav; 2015 Feb; 139():167-76. PubMed ID: 25449395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endogenous hindbrain glucagon-like peptide-1 receptor activation contributes to the control of food intake by mediating gastric satiation signaling.
    Hayes MR; Bradley L; Grill HJ
    Endocrinology; 2009 Jun; 150(6):2654-9. PubMed ID: 19264875
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chronic high fat diet impairs glucagon like peptide-1 sensitivity in vagal afferents.
    Al Helaili A; Park SJ; Beyak MJ
    Biochem Biophys Res Commun; 2020 Nov; 533(1):110-117. PubMed ID: 32943186
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Umami receptor activation increases duodenal bicarbonate secretion via glucagon-like peptide-2 release in rats.
    Wang JH; Inoue T; Higashiyama M; Guth PH; Engel E; Kaunitz JD; Akiba Y
    J Pharmacol Exp Ther; 2011 Nov; 339(2):464-73. PubMed ID: 21846840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glucagon-like peptide-1 inhibits voltage-gated potassium currents in mouse nodose ganglion neurons.
    Gaisano GG; Park SJ; Daly DM; Beyak MJ
    Neurogastroenterol Motil; 2010 Apr; 22(4):470-9, e111. PubMed ID: 20003076
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glucagon-like peptide-1 and insulin synergistically activate vagal afferent neurons.
    Iwasaki Y; Goswami C; Yada T
    Neuropeptides; 2017 Oct; 65():77-82. PubMed ID: 28624122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibitory effect of glucagon-like peptide-1 on small bowel motility. Fasting but not fed motility inhibited via nitric oxide independently of insulin and somatostatin.
    Tolessa T; Gutniak M; Holst JJ; Efendic S; Hellström PM
    J Clin Invest; 1998 Aug; 102(4):764-74. PubMed ID: 9710445
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Circulating glucagon-like peptide-1 (GLP-1) inhibits eating in male rats by acting in the hindbrain and without inducing avoidance.
    Punjabi M; Arnold M; Rüttimann E; Graber M; Geary N; Pacheco-López G; Langhans W
    Endocrinology; 2014 May; 155(5):1690-9. PubMed ID: 24601880
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exendin(9-39)amide is an antagonist of glucagon-like peptide-1(7-36)amide in humans.
    Schirra J; Sturm K; Leicht P; Arnold R; Göke B; Katschinski M
    J Clin Invest; 1998 Apr; 101(7):1421-30. PubMed ID: 9525985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vagal hepatopancreatic reflex effect evoked by intraportal appearance of tGLP-1.
    Nakabayashi H; Nishizawa M; Nakagawa A; Takeda R; Niijima A
    Am J Physiol; 1996 Nov; 271(5 Pt 1):E808-13. PubMed ID: 8944665
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Receptor-mediated inhibition of small bowel migrating complex by GLP-1 analog ROSE-010 delivered via pulmonary and systemic routes in the conscious rat.
    Hellström PM; Smithson A; Stowell G; Greene S; Kenny E; Damico C; Leone-Bay A; Baughman R; Grant M; Richardson P
    Regul Pept; 2012 Nov; 179(1-3):71-6. PubMed ID: 22960405
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of capsaicin-sensitive peripheral sensory neurons in anorexic responses to intravenous infusions of cholecystokinin, peptide YY-(3-36), and glucagon-like peptide-1 in rats.
    Reidelberger R; Haver A; Anders K; Apenteng B
    Am J Physiol Endocrinol Metab; 2014 Oct; 307(8):E619-29. PubMed ID: 25117406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glucagon-like peptide-1 is a physiological incretin in rat.
    Wang Z; Wang RM; Owji AA; Smith DM; Ghatei MA; Bloom SR
    J Clin Invest; 1995 Jan; 95(1):417-21. PubMed ID: 7814643
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The insulinotropic effect of exogenous glucagon-like peptide-1 is not affected by acute vagotomy in anaesthetized pigs.
    Veedfald S; Hansen M; Christensen LW; Larsen SA; Hjøllund KR; Plamboeck A; Hartmann B; Deacon CF; Holst JJ
    Exp Physiol; 2016 Jul; 101(7):895-912. PubMed ID: 27027735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.