These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 19453742)

  • 21. Oxygen consumption-based evaluation of fungal activity.
    Nell M; Mammerler R; Steinkellner S
    Mycol Res; 2006 Jul; 110(Pt 7):760-4. PubMed ID: 16876696
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Serpentine soils do not limit mycorrhizal fungal diversity.
    Branco S; Ree RH
    PLoS One; 2010 Jul; 5(7):e11757. PubMed ID: 20668696
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Role of associated mineral fibres in chrysotile asbestos health effects: the case of balangeroite.
    Turci F; Tomatis M; Compagnoni R; Fubini B
    Ann Occup Hyg; 2009 Jul; 53(5):491-7. PubMed ID: 19435981
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Environmental exposure to asbestos and other inorganic fibres using animal lung model.
    Fornero E; Belluso E; Capella S; Bellis D
    Sci Total Environ; 2009 Jan; 407(3):1010-8. PubMed ID: 19027935
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Different cellular responses evoked by natural and stoichiometric synthetic chrysotile asbestos.
    Gazzano E; Foresti E; Lesci IG; Tomatis M; Riganti C; Fubini B; Roveri N; Ghigo D
    Toxicol Appl Pharmacol; 2005 Aug; 206(3):356-64. PubMed ID: 16039947
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Characterization of the biological properties of acid-treated chrysotile-asbestos fibers].
    Pylev LN; Vasil'eva LA; Stadnikova NM; Smirnova OV; Zubakova LE; Vezentsev AI; Gudkova EA; Bakhtin AI
    Gig Sanit; 2006; (4):70-3. PubMed ID: 17078302
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The combination of oxalic acid with power ultrasound fully degrades chrysotile asbestos fibres.
    Turci F; Tomatis M; Mantegna S; Cravotto G; Fubini B
    J Environ Monit; 2007 Oct; 9(10):1064-6. PubMed ID: 17909639
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effects of naturally occurring acids on the surface properties of chrysotile asbestos.
    Holmes EP; Lavkulich LM
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(12):1445-52. PubMed ID: 25072777
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microbial diversity and mineral composition of weathered serpentine rock of the Khalilovsky massif.
    Khilyas IV; Sorokina AV; Elistratova AA; Markelova MI; Siniagina MN; Sharipova MR; Shcherbakova TA; D'Errico ME; Cohen MF
    PLoS One; 2019; 14(12):e0225929. PubMed ID: 31830070
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Extraction and purification of DNA from phytopathogenic soil-inhabiting Fusarium species.
    Madhosingh C
    J Environ Sci Health B; 1989 Aug; 24(4):413-20. PubMed ID: 2809080
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Amplification of soil fungal community DNA using the ITS86F and ITS4 primers.
    Vancov T; Keen B
    FEMS Microbiol Lett; 2009 Jul; 296(1):91-6. PubMed ID: 19459948
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Relationship between the physiochemical properties of asbestos and pulmonary fibrosis].
    Wrzaszczyk B; Owczarek H
    Med Pr; 1996; 47(4):401-9. PubMed ID: 8847987
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chrysotile asbestos is progressively converted into a non-fibrous amorphous material by the chelating action of lichen metabolites.
    Favero-Longo SE; Turci F; Tomatis M; Castelli D; Bonfante P; Hochella MF; Piervittori R; Fubini B
    J Environ Monit; 2005 Aug; 7(8):764-6. PubMed ID: 16049575
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biological activity in vitro of chrysotile compared to its quarried parent rock (platy serpentine).
    Frank AL; Rohl AN; Wade MJ; Lipkin LE
    J Environ Pathol Toxicol; 1979; 2(4):1041-6. PubMed ID: 448251
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mesothelioma in a worker who spun chrysotile asbestos at home during childhood.
    Yano E; Wang ZM; Wang XR; Wang MZ; Takata A; Kohyama N; Suzuki Y
    Am J Ind Med; 2009 Apr; 52(4):282-7. PubMed ID: 19143009
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Efficiency of pyoverdines in iron removal from flocking asbestos waste: An innovative bacterial bioremediation strategy.
    David SR; Ihiawakrim D; Regis R; Geoffroy VA
    J Hazard Mater; 2020 Jul; 394():122532. PubMed ID: 32200235
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fungal weathering of asbestos in semi arid regions of India.
    Bhattacharya S; John PJ; Ledwani L
    Ecotoxicol Environ Saf; 2016 Feb; 124():186-192. PubMed ID: 26520469
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Physical and biochemical interactions of soil fungi with asbestos fibers.
    Martino E; Cerminara S; Prandi L; Fubini B; Perotto S
    Environ Toxicol Chem; 2004 Apr; 23(4):938-44. PubMed ID: 15095889
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Formation of 8-hydroxydeoxyguanosine by asbestos and man made mineral fibres.
    Leanderson P; Söderkvist P; Tagesson C; Axelson O
    Br J Ind Med; 1988 May; 45(5):309-11. PubMed ID: 2837271
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Acid leaching studies of chrysotile asbestos from mines in the Coalinga region of California and from Quebec and British Columbia.
    Morgan A
    Ann Occup Hyg; 1997 Jun; 41(3):249-68. PubMed ID: 9204753
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.