These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 19454245)

  • 41. Integrated polymerase chain reaction chips utilizing digital microfluidics.
    Chang YH; Lee GB; Huang FC; Chen YY; Lin JL
    Biomed Microdevices; 2006 Sep; 8(3):215-25. PubMed ID: 16718406
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Serial processing of biological reactions using flow-through microfluidic devices: coupled PCR/LDR for the detection of low-abundant DNA point mutations.
    Hashimoto M; Barany F; Xu F; Soper SA
    Analyst; 2007 Sep; 132(9):913-21. PubMed ID: 17710267
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A large volume, portable, real-time PCR reactor.
    Qiu X; Mauk MG; Chen D; Liu C; Bau HH
    Lab Chip; 2010 Nov; 10(22):3170-7. PubMed ID: 20927453
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Thermal factors influencing detection of Vibrio vulnificus using real-time PCR.
    Wang S; Levin RE
    J Microbiol Methods; 2007 May; 69(2):358-63. PubMed ID: 17383036
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Principles of rapid polymerase chain reactions: mathematical modeling and experimental verification.
    Whitney SE; Sudhir A; Nelson RM; Viljoen HJ
    Comput Biol Chem; 2004 Jul; 28(3):195-209. PubMed ID: 15261150
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A buoyancy-driven compact thermocycler for rapid PCR.
    Agrawal N; Ugaz VM
    Clin Lab Med; 2007 Mar; 27(1):215-23. PubMed ID: 17416315
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The construction and use of bacterial DNA microarrays based on an optimized two-stage PCR strategy.
    Postier BL; Wang HL; Singh A; Impson L; Andrews HL; Klahn J; Li H; Risinger G; Pesta D; Deyholos M; Galbraith DW; Sherman LA; Burnap RL
    BMC Genomics; 2003 Jun; 4(1):23. PubMed ID: 12803655
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Autonomous microfluidic multi-channel chip for real-time PCR with integrated liquid handling.
    Frey O; Bonneick S; Hierlemann A; Lichtenberg J
    Biomed Microdevices; 2007 Oct; 9(5):711-8. PubMed ID: 17505882
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Application of an asymmetric helical tube reactor for fast identification of gene transcripts of pathogenic viruses by micro flow-through PCR.
    Hartung R; Brösing A; Sczcepankiewicz G; Liebert U; Häfner N; Dürst M; Felbel J; Lassner D; Köhler JM
    Biomed Microdevices; 2009 Jun; 11(3):685-92. PubMed ID: 19169825
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Quantitative competitive RT-PCR and quantitative detection of Escheriia coli acrA-mRNA].
    Chen AM; Chen YB
    Wei Sheng Wu Xue Bao; 2007 Apr; 47(2):235-9. PubMed ID: 17552226
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Rapid PCR thermocycling using microscale thermal convection.
    Muddu R; Hassan YA; Ugaz VM
    J Vis Exp; 2011 Mar; (49):. PubMed ID: 21403639
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Optimization of a polymerase chain reaction (PCR) for increasing its sensitivity to detect Chlamydia pneumoniae specific genome.
    Malathi J; Shyamala G; Feeba V; Therese KL; Madhavan HN
    Indian J Pathol Microbiol; 2007 Jan; 50(1):104-6. PubMed ID: 17474277
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Micro flow-through PCR in a PMMA chip fabricated by KrF excimer laser.
    Yao L; Liu B; Chen T; Liu S; Zuo T
    Biomed Microdevices; 2005 Sep; 7(3):253-7. PubMed ID: 16133814
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Simply and reliably integrating micro heaters/sensors in a monolithic PCR-CE microfluidic genetic analysis system.
    Zhong R; Pan X; Jiang L; Dai Z; Qin J; Lin B
    Electrophoresis; 2009 Apr; 30(8):1297-305. PubMed ID: 19319907
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Polymerase chain reaction in polymeric microchips: DNA amplification in less than 240 seconds.
    Giordano BC; Ferrance J; Swedberg S; Hühmer AF; Landers JP
    Anal Biochem; 2001 Apr; 291(1):124-32. PubMed ID: 11262165
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A microsystem compatible strategy for viable Escherichia coli detection.
    Zhao W; Yao S; Hsing IM
    Biosens Bioelectron; 2006 Jan; 21(7):1163-70. PubMed ID: 15927460
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Miniaturized nucleic acid amplification systems for rapid and point-of-care diagnostics: a review.
    Ahmad F; Hashsham SA
    Anal Chim Acta; 2012 Jul; 733():1-15. PubMed ID: 22704369
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Parallel-processing continuous-flow device for optimization-free polymerase chain reaction.
    Kim H; Park N; Hahn JH
    Anal Bioanal Chem; 2016 Sep; 408(24):6751-8. PubMed ID: 27473429
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Performing microchannel temperature cycling reactions using reciprocating reagent shuttling along a radial temperature gradient.
    Cheng JY; Hsieh CJ; Chuang YC; Hsieh JR
    Analyst; 2005 Jun; 130(6):931-40. PubMed ID: 15912243
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Real-time electrochemical monitoring of the polymerase chain reaction by mediated redox catalysis.
    Deféver T; Druet M; Rochelet-Dequaire M; Joannes M; Grossiord C; Limoges B; Marchal D
    J Am Chem Soc; 2009 Aug; 131(32):11433-41. PubMed ID: 19722651
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.