These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 19454798)

  • 1. Characteristic times in the English Channel from numerical modelling: supporting decision-making.
    Periáñez R; Miró C
    J Radiol Prot; 2009 Jun; 29(2):219-37. PubMed ID: 19454798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The behaviour of ¹²⁹I released from nuclear fuel reprocessing factories in the North Atlantic Ocean and transport to the Arctic assessed from numerical modelling.
    Villa M; López-Gutiérrez JM; Suh KS; Min BI; Periáñez R
    Mar Pollut Bull; 2015 Jan; 90(1-2):15-24. PubMed ID: 25487086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radionuclide speciation in effluent from La Hague reprocessing plant in France.
    Salbu B; Skipperud L; Germain P; Guéguéniat P; Strand P; Lind OC; Christensen G
    Health Phys; 2003 Sep; 85(3):311-22. PubMed ID: 12938721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A modelling study on 137Cs and 239,240Pu behaviour in the Alborán Sea, western Mediterranean.
    Periáñez R
    J Environ Radioact; 2008 Apr; 99(4):694-715. PubMed ID: 18031877
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of emergency response tools for accidental radiological contamination of French coastal areas.
    Duffa C; Bailly du Bois P; Caillaud M; Charmasson S; Couvez C; Didier D; Dumas F; Fievet B; Morillon M; Renaud P; Thébault H
    J Environ Radioact; 2016 Jan; 151 Pt 2():487-94. PubMed ID: 26032189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A particle-tracking method for simulating the dispersion of non-conservative radionuclides in coastal waters.
    Periáñez R; Elliott AJ
    J Environ Radioact; 2002; 58(1):13-33. PubMed ID: 11763101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The behaviour of
    Periáñez R; Suh KS; Min BI
    Mar Pollut Bull; 2016 Dec; 113(1-2):343-361. PubMed ID: 27765405
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anthropogenic iodine-129 in the Arctic Ocean and Nordic Seas: numerical modeling and prognoses.
    Alfimov V; Possnert G; Aldahan A
    Mar Pollut Bull; 2006 Apr; 52(4):380-5. PubMed ID: 16266731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distribution of oceanic 137Cs from the Fukushima Dai-ichi Nuclear Power Plant simulated numerically by a regional ocean model.
    Tsumune D; Tsubono T; Aoyama M; Hirose K
    J Environ Radioact; 2012 Sep; 111():100-8. PubMed ID: 22071362
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regional long-term model of radioactivity dispersion and fate in the Northwestern Pacific and adjacent seas: application to the Fukushima Dai-ichi accident.
    Maderich V; Bezhenar R; Heling R; de With G; Jung KT; Myoung JG; Cho YK; Qiao F; Robertson L
    J Environ Radioact; 2014 May; 131():4-18. PubMed ID: 24120972
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changing patterns of radionuclide distribution in Irish Sea subtidal sediments.
    Jones DG; Kershaw PJ; McMahon CA; Milodowski AE; Murray M; Hunt GJ
    J Environ Radioact; 2007; 96(1-3):63-74. PubMed ID: 17512643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new comparison of marine dispersion model performances for Fukushima Dai-ichi releases in the frame of IAEA MODARIA program.
    Periáñez R; Brovchenko I; Duffa C; Jung KT; Kobayashi T; Lamego F; Maderich V; Min BI; Nies H; Osvath I; Psaltaki M; Suh KS
    J Environ Radioact; 2015 Dec; 150():247-69. PubMed ID: 26378958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Caesium-137 and strontium-90 temporal series in the Tagus River: experimental results and a modelling study.
    Miró C; Baeza A; Madruga MJ; Periañez R
    J Environ Radioact; 2012 Nov; 113():21-31. PubMed ID: 22613729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulation of atmospheric dispersion of radionuclides using an Eulerian-Lagrangian modelling system.
    Basit A; Espinosa F; Avila R; Raza S; Irfan N
    J Radiol Prot; 2008 Dec; 28(4):539-61. PubMed ID: 19029589
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modelling surface radioactive spill dispersion in the Alborán Sea.
    Periáñez R
    J Environ Radioact; 2006; 90(1):48-67. PubMed ID: 16860913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the sensitivity of a marine dispersion model to parameters describing the transfers of radionuclides between the liquid and solid phases.
    Periáñez R
    J Environ Radioact; 2004; 73(1):101-15. PubMed ID: 15001298
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Testing models for predicting the behaviour of radionuclides in aquatic systems.
    Monte L; Boyer P; Brittain JE; Goutal N; Heling R; Kryshev A; Kryshev I; Laptev G; Luck M; Periañez R; Siclet F; Zheleznyak M
    Appl Radiat Isot; 2008 Nov; 66(11):1736-40. PubMed ID: 18514533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modelling the dispersion of radionuclides following short duration releases to rivers: Part 1. Water and sediment.
    Smith JT; Bowes MJ; Denison FH
    Sci Total Environ; 2006 Sep; 368(2-3):485-501. PubMed ID: 16678242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Testing the behaviour of different kinetic models for uptake/release of radionuclides between water and sediments when implemented in a marine dispersion model.
    Periáñez R
    J Environ Radioact; 2004; 71(3):243-59. PubMed ID: 14613710
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modelling 99Tc concentrations in Fucus vesiculosus from the north-east Irish Sea.
    Nawakowski C; Nicholson MD; Kershaw PJ; Leonard KS
    J Environ Radioact; 2004; 77(2):159-73. PubMed ID: 15312701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.