These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
62. 13C-, 15N- and 31P-NMR studies of oxidized and reduced low molecular mass thioredoxin reductase and some mutant proteins. Eisenreich W; Kemter K; Bacher A; Mulrooney SB; Williams CH; Müller F Eur J Biochem; 2004 Apr; 271(8):1437-52. PubMed ID: 15066170 [TBL] [Abstract][Full Text] [Related]
63. Cooperative hydrogen bonding effects are key determinants of backbone amide proton chemical shifts in proteins. Parker LL; Houk AR; Jensen JH J Am Chem Soc; 2006 Aug; 128(30):9863-72. PubMed ID: 16866544 [TBL] [Abstract][Full Text] [Related]
64. Empirical correlation between protein backbone 15N and 13C secondary chemical shifts and its application to nitrogen chemical shift re-referencing. Wang L; Markley JL J Biomol NMR; 2009 Jun; 44(2):95-9. PubMed ID: 19436955 [TBL] [Abstract][Full Text] [Related]
65. Deuterium isotope effects and fractionation factors of hydrogen-bonded A:T base pairs of DNA. Vakonakis I; Salazar M; Kang M; Dunbar KR; LiWang AC J Biomol NMR; 2003 Feb; 25(2):105-12. PubMed ID: 12652119 [TBL] [Abstract][Full Text] [Related]
66. Deuterium isotope shifts for backbone ¹H, ¹⁵N and ¹³C nuclei in intrinsically disordered protein α-synuclein. Maltsev AS; Ying J; Bax A J Biomol NMR; 2012 Oct; 54(2):181-91. PubMed ID: 22960996 [TBL] [Abstract][Full Text] [Related]
67. Backbone assignment of fully protonated solid proteins by 1H detection and ultrafast magic-angle-spinning NMR spectroscopy. Marchetti A; Jehle S; Felletti M; Knight MJ; Wang Y; Xu ZQ; Park AY; Otting G; Lesage A; Emsley L; Dixon NE; Pintacuda G Angew Chem Int Ed Engl; 2012 Oct; 51(43):10756-9. PubMed ID: 23023570 [No Abstract] [Full Text] [Related]
68. 13C and 15N NMR studies of iron-bound cyanides of heme proteins and related model complexes: sensitive probe for detecting hydrogen-bonding interactions at the proximal and distal sides. Fujii H; Yoshida T Inorg Chem; 2006 Aug; 45(17):6816-27. PubMed ID: 16903738 [TBL] [Abstract][Full Text] [Related]
69. Intramolecular hydrogen bonding of novel o-hydroxythioacetophenones and related compounds evaluated by deuterium isotope effects on 13C chemical shifts. Nguyen TT; Le TN; Duus F; Hansen BK; Hansen PE Magn Reson Chem; 2007 Mar; 45(3):245-52. PubMed ID: 17290362 [TBL] [Abstract][Full Text] [Related]
70. Acid-base interactions and secondary structures of poly-L-lysine probed by 15N and 13C solid state NMR and Ab initio model calculations. Dos A; Schimming V; Tosoni S; Limbach HH J Phys Chem B; 2008 Dec; 112(49):15604-15. PubMed ID: 19367899 [TBL] [Abstract][Full Text] [Related]
71. NMR structural and dynamic characterization of the acid-unfolded state of apomyoglobin provides insights into the early events in protein folding. Yao J; Chung J; Eliezer D; Wright PE; Dyson HJ Biochemistry; 2001 Mar; 40(12):3561-71. PubMed ID: 11297422 [TBL] [Abstract][Full Text] [Related]
72. Facile measurement of ¹H-¹5N residual dipolar couplings in larger perdeuterated proteins. Fitzkee NC; Bax A J Biomol NMR; 2010 Oct; 48(2):65-70. PubMed ID: 20694505 [TBL] [Abstract][Full Text] [Related]
73. Isotopic fractionation in proteins as a measure of hydrogen bond length. McKenzie RH; Athokpam B; Ramesh SG J Chem Phys; 2015 Jul; 143(4):044309. PubMed ID: 26233131 [TBL] [Abstract][Full Text] [Related]
74. Trans-hydrogen bond deuterium isotope effects of A:T base pairs in DNA. Vakonakis I; LiWang AC J Biomol NMR; 2004 May; 29(1):65-72. PubMed ID: 15017140 [TBL] [Abstract][Full Text] [Related]
75. 15N chemical shift anisotropy in protein structure refinement and comparison with NH residual dipolar couplings. Lipsitz RS; Tjandra N J Magn Reson; 2003 Sep; 164(1):171-6. PubMed ID: 12932470 [TBL] [Abstract][Full Text] [Related]
76. Solid-state NMR study of Schiff base derivatives of 2-hydroxynaphthaldehyde. Deuterium isotope effects on 15N chemical shifts in the solid state. Rozwadowski Z; Schilf W; Kamieński B Magn Reson Chem; 2005 Jul; 43(7):573-7. PubMed ID: 15861486 [TBL] [Abstract][Full Text] [Related]
77. A general strategy for the assignment of aliphatic side-chain resonances of uniformly 13C,15N-labeled large proteins. Xu Y; Lin Z; Ho C; Yang D J Am Chem Soc; 2005 Aug; 127(34):11920-1. PubMed ID: 16117513 [TBL] [Abstract][Full Text] [Related]
78. Easy and unambiguous sequential assignments of intrinsically disordered proteins by correlating the backbone 15N or 13C' chemical shifts of multiple contiguous residues in highly resolved 3D spectra. Yoshimura Y; Kulminskaya NV; Mulder FA J Biomol NMR; 2015 Feb; 61(2):109-21. PubMed ID: 25577242 [TBL] [Abstract][Full Text] [Related]
79. Using equilibrium isotope effects to detect intramolecular OH/OH hydrogen bonds: structural and solvent effects. Vasquez TE; Bergset JM; Fierman MB; Nelson A; Roth J; Khan SI; O'Leary DJ J Am Chem Soc; 2002 Mar; 124(12):2931-8. PubMed ID: 11902884 [TBL] [Abstract][Full Text] [Related]
80. pH-dependent random coil (1)H, (13)C, and (15)N chemical shifts of the ionizable amino acids: a guide for protein pK a measurements. Platzer G; Okon M; McIntosh LP J Biomol NMR; 2014 Nov; 60(2-3):109-29. PubMed ID: 25239571 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]