BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 19456124)

  • 1. Transmembrane helix 12 modulates progression of the ATP catalytic cycle in ABCB1.
    Crowley E; O'Mara ML; Reynolds C; Tieleman DP; Storm J; Kerr ID; Callaghan R
    Biochemistry; 2009 Jul; 48(26):6249-58. PubMed ID: 19456124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transmembrane helix 12 plays a pivotal role in coupling energy provision and drug binding in ABCB1.
    Crowley E; O'Mara ML; Kerr ID; Callaghan R
    FEBS J; 2010 Oct; 277(19):3974-85. PubMed ID: 20731718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nucleotide binding, ATP hydrolysis, and mutation of the catalytic carboxylates of human P-glycoprotein cause distinct conformational changes in the transmembrane segments.
    Loo TW; Bartlett MC; Clarke DM
    Biochemistry; 2007 Aug; 46(32):9328-36. PubMed ID: 17636884
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Importance of the conserved Walker B glutamate residues, 556 and 1201, for the completion of the catalytic cycle of ATP hydrolysis by human P-glycoprotein (ABCB1).
    Sauna ZE; Müller M; Peng XH; Ambudkar SV
    Biochemistry; 2002 Nov; 41(47):13989-4000. PubMed ID: 12437356
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The central cavity of ABCB1 undergoes alternating access during ATP hydrolysis.
    van Wonderen JH; McMahon RM; O'Mara ML; McDevitt CA; Thomson AJ; Kerr ID; MacMillan F; Callaghan R
    FEBS J; 2014 May; 281(9):2190-2201. PubMed ID: 24597976
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple transport-active binding sites are available for a single substrate on human P-glycoprotein (ABCB1).
    Chufan EE; Kapoor K; Sim HM; Singh S; Talele TT; Durell SR; Ambudkar SV
    PLoS One; 2013; 8(12):e82463. PubMed ID: 24349290
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cross-linking of human multidrug resistance P-glycoprotein by the substrate, tris-(2-maleimidoethyl)amine, is altered by ATP hydrolysis. Evidence for rotation of a transmembrane helix.
    Loo TW; Clarke DM
    J Biol Chem; 2001 Aug; 276(34):31800-5. PubMed ID: 11429407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of residues in the drug-binding domain of human P-glycoprotein. Analysis of transmembrane segment 11 by cysteine-scanning mutagenesis and inhibition by dibromobimane.
    Loo TW; Clarke DM
    J Biol Chem; 1999 Dec; 274(50):35388-92. PubMed ID: 10585407
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous binding of two different drugs in the binding pocket of the human multidrug resistance P-glycoprotein.
    Loo TW; Bartlett MC; Clarke DM
    J Biol Chem; 2003 Oct; 278(41):39706-10. PubMed ID: 12909621
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual effects of the PI3K inhibitor ZSTK474 on multidrug efflux pumps in resistant cancer cells.
    Muthiah D; Callaghan R
    Eur J Pharmacol; 2017 Nov; 815():127-137. PubMed ID: 28912036
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of multidrug resistance-linked P-glycoprotein (ABCB1) function by 5'-fluorosulfonylbenzoyl 5'-adenosine: evidence for an ATP analogue that interacts with both drug-substrate-and nucleotide-binding sites.
    Ohnuma S; Chufan E; Nandigama K; Jenkins LM; Durell SR; Appella E; Sauna ZE; Ambudkar SV
    Biochemistry; 2011 May; 50(18):3724-35. PubMed ID: 21452853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Permanent activation of the human P-glycoprotein by covalent modification of a residue in the drug-binding site.
    Loo TW; Bartlett MC; Clarke DM
    J Biol Chem; 2003 Jun; 278(23):20449-52. PubMed ID: 12711602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of oxidative cross-linking between engineered cysteine residues at positions 332 in predicted transmembrane segments (TM) 6 and 975 in predicted TM12 of human P-glycoprotein by drug substrates.
    Loo TW; Clarke DM
    J Biol Chem; 1996 Nov; 271(44):27482-7. PubMed ID: 8910331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shedding light on drug transport: structure and function of the P-glycoprotein multidrug transporter (ABCB1).
    Sharom FJ
    Biochem Cell Biol; 2006 Dec; 84(6):979-92. PubMed ID: 17215884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human ABCB1 with an ABCB11-like degenerate nucleotide binding site maintains transport activity by avoiding nucleotide occlusion.
    Goda K; Dönmez-Cakil Y; Tarapcsák S; Szalóki G; Szöllősi D; Parveen Z; Türk D; Szakács G; Chiba P; Stockner T
    PLoS Genet; 2020 Oct; 16(10):e1009016. PubMed ID: 33031417
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drug-protein hydrogen bonds govern the inhibition of the ATP hydrolysis of the multidrug transporter P-glycoprotein.
    Chufan EE; Kapoor K; Ambudkar SV
    Biochem Pharmacol; 2016 Feb; 101():40-53. PubMed ID: 26686578
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential Coupling of Binding, ATP Hydrolysis, and Transport of Fluorescent Probes with P-Glycoprotein in Lipid Nanodiscs.
    Li MJ; Nath A; Atkins WM
    Biochemistry; 2017 May; 56(19):2506-2517. PubMed ID: 28441502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The topography of transmembrane segment six is altered during the catalytic cycle of P-glycoprotein.
    Rothnie A; Storm J; Campbell J; Linton KJ; Kerr ID; Callaghan R
    J Biol Chem; 2004 Aug; 279(33):34913-21. PubMed ID: 15192095
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of an asymmetric occluded state of P-glycoprotein with two bound nucleotides: implications for catalysis.
    Siarheyeva A; Liu R; Sharom FJ
    J Biol Chem; 2010 Mar; 285(10):7575-86. PubMed ID: 20061384
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Drug-stimulated ATPase activity of human P-glycoprotein requires movement between transmembrane segments 6 and 12.
    Loo TW; Clarke DM
    J Biol Chem; 1997 Aug; 272(34):20986-9. PubMed ID: 9261097
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.