These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 19456124)
1. Transmembrane helix 12 modulates progression of the ATP catalytic cycle in ABCB1. Crowley E; O'Mara ML; Reynolds C; Tieleman DP; Storm J; Kerr ID; Callaghan R Biochemistry; 2009 Jul; 48(26):6249-58. PubMed ID: 19456124 [TBL] [Abstract][Full Text] [Related]
2. Transmembrane helix 12 plays a pivotal role in coupling energy provision and drug binding in ABCB1. Crowley E; O'Mara ML; Kerr ID; Callaghan R FEBS J; 2010 Oct; 277(19):3974-85. PubMed ID: 20731718 [TBL] [Abstract][Full Text] [Related]
3. Nucleotide binding, ATP hydrolysis, and mutation of the catalytic carboxylates of human P-glycoprotein cause distinct conformational changes in the transmembrane segments. Loo TW; Bartlett MC; Clarke DM Biochemistry; 2007 Aug; 46(32):9328-36. PubMed ID: 17636884 [TBL] [Abstract][Full Text] [Related]
4. Importance of the conserved Walker B glutamate residues, 556 and 1201, for the completion of the catalytic cycle of ATP hydrolysis by human P-glycoprotein (ABCB1). Sauna ZE; Müller M; Peng XH; Ambudkar SV Biochemistry; 2002 Nov; 41(47):13989-4000. PubMed ID: 12437356 [TBL] [Abstract][Full Text] [Related]
5. The central cavity of ABCB1 undergoes alternating access during ATP hydrolysis. van Wonderen JH; McMahon RM; O'Mara ML; McDevitt CA; Thomson AJ; Kerr ID; MacMillan F; Callaghan R FEBS J; 2014 May; 281(9):2190-2201. PubMed ID: 24597976 [TBL] [Abstract][Full Text] [Related]
6. Multiple transport-active binding sites are available for a single substrate on human P-glycoprotein (ABCB1). Chufan EE; Kapoor K; Sim HM; Singh S; Talele TT; Durell SR; Ambudkar SV PLoS One; 2013; 8(12):e82463. PubMed ID: 24349290 [TBL] [Abstract][Full Text] [Related]
7. Cross-linking of human multidrug resistance P-glycoprotein by the substrate, tris-(2-maleimidoethyl)amine, is altered by ATP hydrolysis. Evidence for rotation of a transmembrane helix. Loo TW; Clarke DM J Biol Chem; 2001 Aug; 276(34):31800-5. PubMed ID: 11429407 [TBL] [Abstract][Full Text] [Related]
8. Identification of residues in the drug-binding domain of human P-glycoprotein. Analysis of transmembrane segment 11 by cysteine-scanning mutagenesis and inhibition by dibromobimane. Loo TW; Clarke DM J Biol Chem; 1999 Dec; 274(50):35388-92. PubMed ID: 10585407 [TBL] [Abstract][Full Text] [Related]
9. Simultaneous binding of two different drugs in the binding pocket of the human multidrug resistance P-glycoprotein. Loo TW; Bartlett MC; Clarke DM J Biol Chem; 2003 Oct; 278(41):39706-10. PubMed ID: 12909621 [TBL] [Abstract][Full Text] [Related]
10. Dual effects of the PI3K inhibitor ZSTK474 on multidrug efflux pumps in resistant cancer cells. Muthiah D; Callaghan R Eur J Pharmacol; 2017 Nov; 815():127-137. PubMed ID: 28912036 [TBL] [Abstract][Full Text] [Related]
11. Inhibition of multidrug resistance-linked P-glycoprotein (ABCB1) function by 5'-fluorosulfonylbenzoyl 5'-adenosine: evidence for an ATP analogue that interacts with both drug-substrate-and nucleotide-binding sites. Ohnuma S; Chufan E; Nandigama K; Jenkins LM; Durell SR; Appella E; Sauna ZE; Ambudkar SV Biochemistry; 2011 May; 50(18):3724-35. PubMed ID: 21452853 [TBL] [Abstract][Full Text] [Related]
12. Permanent activation of the human P-glycoprotein by covalent modification of a residue in the drug-binding site. Loo TW; Bartlett MC; Clarke DM J Biol Chem; 2003 Jun; 278(23):20449-52. PubMed ID: 12711602 [TBL] [Abstract][Full Text] [Related]
13. Inhibition of oxidative cross-linking between engineered cysteine residues at positions 332 in predicted transmembrane segments (TM) 6 and 975 in predicted TM12 of human P-glycoprotein by drug substrates. Loo TW; Clarke DM J Biol Chem; 1996 Nov; 271(44):27482-7. PubMed ID: 8910331 [TBL] [Abstract][Full Text] [Related]
14. Shedding light on drug transport: structure and function of the P-glycoprotein multidrug transporter (ABCB1). Sharom FJ Biochem Cell Biol; 2006 Dec; 84(6):979-92. PubMed ID: 17215884 [TBL] [Abstract][Full Text] [Related]
15. Human ABCB1 with an ABCB11-like degenerate nucleotide binding site maintains transport activity by avoiding nucleotide occlusion. Goda K; Dönmez-Cakil Y; Tarapcsák S; Szalóki G; Szöllősi D; Parveen Z; Türk D; Szakács G; Chiba P; Stockner T PLoS Genet; 2020 Oct; 16(10):e1009016. PubMed ID: 33031417 [TBL] [Abstract][Full Text] [Related]
16. Drug-protein hydrogen bonds govern the inhibition of the ATP hydrolysis of the multidrug transporter P-glycoprotein. Chufan EE; Kapoor K; Ambudkar SV Biochem Pharmacol; 2016 Feb; 101():40-53. PubMed ID: 26686578 [TBL] [Abstract][Full Text] [Related]
17. Differential Coupling of Binding, ATP Hydrolysis, and Transport of Fluorescent Probes with P-Glycoprotein in Lipid Nanodiscs. Li MJ; Nath A; Atkins WM Biochemistry; 2017 May; 56(19):2506-2517. PubMed ID: 28441502 [TBL] [Abstract][Full Text] [Related]
18. The topography of transmembrane segment six is altered during the catalytic cycle of P-glycoprotein. Rothnie A; Storm J; Campbell J; Linton KJ; Kerr ID; Callaghan R J Biol Chem; 2004 Aug; 279(33):34913-21. PubMed ID: 15192095 [TBL] [Abstract][Full Text] [Related]
19. Characterization of an asymmetric occluded state of P-glycoprotein with two bound nucleotides: implications for catalysis. Siarheyeva A; Liu R; Sharom FJ J Biol Chem; 2010 Mar; 285(10):7575-86. PubMed ID: 20061384 [TBL] [Abstract][Full Text] [Related]
20. Drug-stimulated ATPase activity of human P-glycoprotein requires movement between transmembrane segments 6 and 12. Loo TW; Clarke DM J Biol Chem; 1997 Aug; 272(34):20986-9. PubMed ID: 9261097 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]