BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 19456347)

  • 41. Distribution of the mRNAs encoding the thyrotropin-releasing hormone (TRH) precursor and three TRH receptors in the brain and pituitary of Xenopus laevis: effect of background color adaptation on TRH and TRH receptor gene expression.
    Bidaud I; Galas L; Bulant M; Jenks BG; Ouwens DT; Jégou S; Ladram A; Roubos EW; Tonon MC; Nicolas P; Vaudry H
    J Comp Neurol; 2004 Sep; 477(1):11-28. PubMed ID: 15281077
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Thyroid hormone and gamma-aminobutyric acid (GABA) interactions in neuroendocrine systems.
    Wiens SC; Trudeau VL
    Comp Biochem Physiol A Mol Integr Physiol; 2006 Jul; 144(3):332-44. PubMed ID: 16527506
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Corticotropin-releasing factor stimulates metamorphosis and increases thyroid hormone concentration in prometamorphic Rana perezi larvae.
    Gancedo B; Corpas I; Alonso-Gómez AL; Delgado MJ; Morreale de Escobar G; Alonso-Bedate M
    Gen Comp Endocrinol; 1992 Jul; 87(1):6-13. PubMed ID: 1624098
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Corticotropin-releasing factor is a downstream mediator of the beta-melanocyte-stimulating hormone-induced anorexigenic pathway in chicks.
    Kamisoyama H; Honda K; Saneyasu T; Sugahara K; Hasegawa S
    Neurosci Lett; 2009 Jul; 458(3):102-5. PubMed ID: 19393716
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Neonatal low-protein diet changes deiodinase activities and pituitary TSH response to TRH in adult rats.
    Lisboa PC; Fagundes AT; Denolato AT; Oliveira E; Bonomo IT; Alves SB; Curty FH; Passos MC; Moura EG
    Exp Biol Med (Maywood); 2008 Jan; 233(1):57-63. PubMed ID: 18156306
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Localisation and physiological regulation of corticotrophin-releasing factor receptor 1 mRNA in the Xenopus laevis brain and pituitary gland.
    Calle M; Jenks BG; Corstens GJ; Veening JG; Barendregt HP; Roubos EW
    J Neuroendocrinol; 2006 Oct; 18(10):797-805. PubMed ID: 16965298
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Influence of cortisol on the larval bullfrog thyroid axis in vitro and in vivo and on plasma and ocular melatonin.
    Wright ML; Rzasa BA; Weir RJ; Babski AM
    Gen Comp Endocrinol; 1999 Nov; 116(2):249-60. PubMed ID: 10562455
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Hypothalamic factors: recent diagnostic and therapeutic advances].
    Gaillard RC
    Schweiz Med Wochenschr; 1987 Aug; 117(34):1270-7. PubMed ID: 2890201
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Regulation of pituitary thyrotropin secretion.
    Licht P; Denver RJ
    Prog Clin Biol Res; 1990; 342():427-32. PubMed ID: 2200023
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Hormonal and pheromonal studies on amphibians with special reference to metamorphosis and reproductive behavior.
    Kikuyama S; Yamamoto K; Toyoda F; Kouki T; Okada R
    Dev Growth Differ; 2023 Aug; 65(6):321-336. PubMed ID: 37246964
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Development of the hypothalamo-hypophyseal system in amphibians with special reference to metamorphosis.
    Kikuyama S; Hasunuma I; Okada R
    Mol Cell Endocrinol; 2021 Mar; 524():111143. PubMed ID: 33385474
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Impaired autofeedback regulation of hypothalamic norepinephrine release in experimental uremia.
    Klein K; Daschner M; Vogel M; Oh J; Feuerstein TJ; Schaefer F
    J Am Soc Nephrol; 2005 Jul; 16(7):2081-7. PubMed ID: 15829712
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Neuroendocrine regulation and biochemical aspects of the induction of amphibian metamorphosis.
    Voitkevich AA; Nestaiko GV
    Sov J Dev Biol; 1971; 2(1):8-17. PubMed ID: 5005845
    [No Abstract]   [Full Text] [Related]  

  • 54. Suppression of hypothalamic deiodinase type II activity blunts TRH mRNA decline during fasting.
    Coppola A; Hughes J; Esposito E; Schiavo L; Meli R; Diano S
    FEBS Lett; 2005 Aug; 579(21):4654-8. PubMed ID: 16098513
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effect of immobilization on in vitro thyrotropin-releasing hormone release from brain septum in wild-type and corticotropin-releasing hormone knock-out mice.
    Kiss A; Adameová A; Kubovcáková L; Jamal B; Bacová Z; Zórad S; Tybitanclová K; Kvetnanský R; Strbák V
    Ann N Y Acad Sci; 2004 Jun; 1018():207-13. PubMed ID: 15240370
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Regulation and role of p21-activated kinase 3 by corticotropin-releasing factor in mouse pituitary.
    Kageyama K; Sakihara S; Suda T
    Regul Pept; 2009 Jan; 152(1-3):88-94. PubMed ID: 18940205
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The origins of the vertebrate hypothalamic-pituitary-gonadal (HPG) and hypothalamic-pituitary-thyroid (HPT) endocrine systems: new insights from lampreys.
    Sower SA; Freamat M; Kavanaugh SI
    Gen Comp Endocrinol; 2009 Mar; 161(1):20-9. PubMed ID: 19084529
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Hypothalamic hormones a.k.a. hypothalamic releasing factors.
    Guillemin R
    J Endocrinol; 2005 Jan; 184(1):11-28. PubMed ID: 15642779
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Neuroendocrinology of the pituitary gland.
    Reichlin S
    Toxicol Pathol; 1989; 17(2):250-5. PubMed ID: 2675278
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Stress hormones mediate environment-genotype interactions during amphibian development.
    Denver RJ
    Gen Comp Endocrinol; 2009 Oct; 164(1):20-31. PubMed ID: 19393659
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.