BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 19456369)

  • 1. Metabolism of the endocrine disruptor BPA by Xenopus laevis tadpoles.
    Fini JB; Dolo L; Cravedi JP; Demeneix B; Zalko D
    Ann N Y Acad Sci; 2009 Apr; 1163():394-7. PubMed ID: 19456369
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Parallel biotransformation of tetrabromobisphenol A in Xenopus laevis and mammals: Xenopus as a model for endocrine perturbation studies.
    Fini JB; Riu A; Debrauwer L; Hillenweck A; Le Mével S; Chevolleau S; Boulahtouf A; Palmier K; Balaguer P; Cravedi JP; Demeneix BA; Zalko D
    Toxicol Sci; 2012 Feb; 125(2):359-67. PubMed ID: 22086976
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of histological and molecular endpoints for enhanced detection of thyroid system disruption in Xenopus laevis tadpoles.
    Opitz R; Hartmann S; Blank T; Braunbeck T; Lutz I; Kloas W
    Toxicol Sci; 2006 Apr; 90(2):337-48. PubMed ID: 16396842
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Viable skin efficiently absorbs and metabolizes bisphenol A.
    Zalko D; Jacques C; Duplan H; Bruel S; Perdu E
    Chemosphere; 2011 Jan; 82(3):424-30. PubMed ID: 21030062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Excretion of bisphenol A into rat milk.
    Okabayashi K; Watanabe T
    Toxicol Mech Methods; 2010 Mar; 20(3):133-6. PubMed ID: 20163291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glycosylation of bisphenol A by freshwater microalgae.
    Nakajima N; Teramoto T; Kasai F; Sano T; Tamaoki M; Aono M; Kubo A; Kamada H; Azumi Y; Saji H
    Chemosphere; 2007 Oct; 69(6):934-41. PubMed ID: 17629547
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of bisphenol A with or without enzyme treatment on the proliferation and viability of MCF-7 cells.
    Ricupito A; Del Pozzo G; Diano N; Grano V; Portaccio M; Marino M; Bolli A; Galluzzo P; Bontempo P; Mita L; Altucci L; Mita DG
    Environ Int; 2009 Jan; 35(1):21-6. PubMed ID: 18640724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biotransformation of genistein and bisphenol A in cell lines used for screening endocrine disruptors.
    Bursztyka J; Perdu E; Pettersson K; Pongratz I; Fernández-Cabrera M; Olea N; Debrauwer L; Zalko D; Cravedi JP
    Toxicol In Vitro; 2008 Sep; 22(6):1595-604. PubMed ID: 18640261
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bidirectional placental transfer of Bisphenol A and its main metabolite, Bisphenol A-Glucuronide, in the isolated perfused human placenta.
    Corbel T; Gayrard V; Puel S; Lacroix MZ; Berrebi A; Gil S; Viguié C; Toutain PL; Picard-Hagen N
    Reprod Toxicol; 2014 Aug; 47():51-8. PubMed ID: 24933518
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro and in vivo analysis of the thyroid system-disrupting activities of brominated phenolic and phenol compounds in Xenopus laevis.
    Kudo Y; Yamauchi K; Fukazawa H; Terao Y
    Toxicol Sci; 2006 Jul; 92(1):87-95. PubMed ID: 16627555
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural evidence for endocrine disruptor bisphenol A binding to human nuclear receptor ERR gamma.
    Matsushima A; Kakuta Y; Teramoto T; Koshiba T; Liu X; Okada H; Tokunaga T; Kawabata S; Kimura M; Shimohigashi Y
    J Biochem; 2007 Oct; 142(4):517-24. PubMed ID: 17761695
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photodegradation of bisphenol A in simulated lake water containing algae, humic acid and ferric ions.
    Peng Z; Wu F; Deng N
    Environ Pollut; 2006 Dec; 144(3):840-6. PubMed ID: 16603296
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Floricultural Salvia plants have a high ability to eliminate bisphenol A.
    Okuhata H; Ikeda K; Miyasaka H; Takahashi S; Matsui T; Nakayama H; Kato K; Hirata K
    J Biosci Bioeng; 2010 Jul; 110(1):99-101. PubMed ID: 20541124
    [TBL] [Abstract][Full Text] [Related]  

  • 14. All ZZ male Xenopus laevis provides a clear sex-reversal test for feminizing endocrine disruptors.
    Oka T; Mitsui N; Hinago M; Miyahara M; Fujii T; Tooi O; Santo N; Urushitani H; Iguchi T; Hanaoka Y; Mikamid H
    Ecotoxicol Environ Saf; 2006 Feb; 63(2):236-43. PubMed ID: 16139364
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bisphenol A content in fish caught in two different sites of the Tyrrhenian Sea (Italy).
    Mita L; Bianco M; Viggiano E; Zollo F; Bencivenga U; Sica V; Monaco G; Portaccio M; Diano N; Colonna A; Lepore M; Canciglia P; Mita DG
    Chemosphere; 2011 Jan; 82(3):405-10. PubMed ID: 20971495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biodegradation of endocrine disrupting compounds in harbour seawater and sediments.
    Robinson BJ; Hellou J
    Sci Total Environ; 2009 Oct; 407(21):5713-8. PubMed ID: 19665171
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modelling as a tool when interpreting biodegradation of micro pollutants in activated sludge systems.
    Press-Kristensen K; Lindblom E; Henze M
    Water Sci Technol; 2007; 56(11):11-6. PubMed ID: 18057636
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biodegradation or metabolism of bisphenol A: from microorganisms to mammals.
    Kang JH; Katayama Y; Kondo F
    Toxicology; 2006 Jan; 217(2-3):81-90. PubMed ID: 16288945
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photooxidation of bisphenol A (BPA) in water in the presence of ferric and carboxylate salts.
    Zhou D; Wu F; Deng N; Xiang W
    Water Res; 2004 Nov; 38(19):4107-16. PubMed ID: 15491658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Absorption and metabolism of bisphenol A, a possible endocrine disruptor, in the aquatic edible plant, water convolvulus (Ipomoea aquatica).
    Noureddin IM; Furumoto T; Ishida Y; Fukui H
    Biosci Biotechnol Biochem; 2004 Jun; 68(6):1398-402. PubMed ID: 15215615
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.