These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 19456405)

  • 21. Alpha-melanophore-stimulating hormone in the brain, cranial placode derivatives, and retina of Xenopus laevis during development in relation to background adaptation.
    Kramer BM; Claassen IE; Westphal NJ; Jansen M; Tuinhof R; Jenks BG; Roubos EW
    J Comp Neurol; 2003 Jan; 456(1):73-83. PubMed ID: 12508315
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pituitary atrial natriuretic peptide of paraventricular nucleus origin.
    Fodor M; Makara GB; Palkovits M
    Ideggyogy Sz; 2007 Mar; 60(3-4):94-6. PubMed ID: 17451047
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Immunocytochemical characterization of vasotocin and mesotocin secretory systems in duck brain].
    Bons N
    C R Seances Acad Sci D; 1980 Jan; 290(2):113-6. PubMed ID: 6771045
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Co-localization of mesotocin and opsin immunoreactivity in the hypothalamic preoptic nucleus of Xenopus laevis.
    Alvarez-Viejo M; Cernuda-Cernuda R; DeGrip WJ; Alvarez-López C; García-Fernández JM
    Brain Res; 2003 Apr; 969(1-2):36-43. PubMed ID: 12676362
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Adrenergic regulation of hypothalamic proenkephalin neurons: evidence for opposite effects in subpopulations terminating in median eminence and neurointermediate pituitary.
    George SR; Roldan L; Haas DA
    Neuroendocrinology; 1990 Aug; 52(2):191-5. PubMed ID: 2125707
    [TBL] [Abstract][Full Text] [Related]  

  • 26. TRH acts as a multifunctional hypophysiotropic factor in vertebrates.
    Galas L; Raoult E; Tonon MC; Okada R; Jenks BG; Castaño JP; Kikuyama S; Malagon M; Roubos EW; Vaudry H
    Gen Comp Endocrinol; 2009 Oct; 164(1):40-50. PubMed ID: 19435597
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Immunohistochemical identification, in an anuran amphibian (Xenopus laevis Daud.) of infundibular neurons reacting with antigastrin serum].
    Doerr-Schott J; Garaud JC; Clause RO
    C R Seances Acad Sci D; 1979 Apr; 288(13):1055-8. PubMed ID: 110481
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Distribution of thyrotropin-releasing hormone (TRH) immunoreactivity in the brain of urodele amphibians.
    Domínguez L; López JM; González A
    Brain Behav Evol; 2008; 71(3):231-46. PubMed ID: 18382103
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chronic melatonin and binocular plasticity in Xenopus frogs.
    Udin SB
    Gen Comp Endocrinol; 2005 Jul; 142(3):274-9. PubMed ID: 15935153
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regeneration of the neural lobe in the adult frog, xenopus laevis daudin.
    Sato NL; Inoue S
    Gunma J Med Sci; 1967 Jun; 16(2):100-21. PubMed ID: 5605695
    [No Abstract]   [Full Text] [Related]  

  • 31. Sex differences in the brain: plasticity and constraints. Focus on "Androgen-induced vocal transformation in adult female african clawed frogs".
    Burmeister SS
    J Neurophysiol; 2005 Jul; 94(1):33-4. PubMed ID: 15985694
    [No Abstract]   [Full Text] [Related]  

  • 32. Dynamics of glucocorticoid and mineralocorticoid receptors in the Xenopus laevis pituitary pars intermedia.
    Roubos EW; Kuribara M; Kuipers-Kwant FJ; Coenen TA; Meijer KH; Cruijsen PM; Denver RJ
    Ann N Y Acad Sci; 2009 Apr; 1163():292-5. PubMed ID: 19456350
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The volume of the pituitary and median eminence in stalk-sectioned rabbits.
    CAMPBELL HJ; HARRIS GW
    J Physiol; 1957 Apr; 136(2):333-43. PubMed ID: 13429491
    [No Abstract]   [Full Text] [Related]  

  • 34. Changes in the rate of incorporation of (H3)leucine in the pars intermedia of Xenopus laevis at early times after change of background colour.
    Whur P; Thornton VF; Weatherhead B
    J Endocrinol; 1971 Mar; 49(3):xxiv-xxv. PubMed ID: 5090917
    [No Abstract]   [Full Text] [Related]  

  • 35. Role of nitric oxide synthase and nitric oxide in background adaptation in Xenopus laevis.
    Allaerts W; Ubink R; Buzzi M; Jenks BG; Roubos EW
    Ann N Y Acad Sci; 1998 May; 839():564-5. PubMed ID: 9629218
    [No Abstract]   [Full Text] [Related]  

  • 36. The preoptico-neurohypophysial neurosecretory system in thyroidless Xenopus laevis larvae.
    Srebro Z
    Folia Biol (Krakow); 1971; 19(2):201-8. PubMed ID: 5165634
    [No Abstract]   [Full Text] [Related]  

  • 37. Transdifferentiation of larval Xenopus laevis iris under the influence of the pituitary.
    Cioni C; Bosco L; Filoni S
    Experientia; 1990 Oct; 46(10):1078-80. PubMed ID: 2226723
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Using transgenic animal models in neuroendocrine research: lessons from Xenopus laevis.
    Scheenen WJ; Jansen EJ; Roubos EW; Martens GJ
    Ann N Y Acad Sci; 2009 Apr; 1163():296-307. PubMed ID: 19456351
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CELLULAR LOCALIZATION OF MONOAMINES IN THE MEDIAN EMINENCE AND THE INFUNDIBULAR STEM OF SOME MAMMALS.
    FUXE K
    Z Zellforsch Mikrosk Anat; 1964; 61():710-24. PubMed ID: 14158190
    [No Abstract]   [Full Text] [Related]  

  • 40. VA opsin-based photoreceptors in the hypothalamus of birds.
    Halford S; Pires SS; Turton M; Zheng L; González-Menéndez I; Davies WL; Peirson SN; García-Fernández JM; Hankins MW; Foster RG
    Curr Biol; 2009 Aug; 19(16):1396-402. PubMed ID: 19664923
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.