These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 19457451)

  • 1. Molecular basis of the myogenic profile of aged human skeletal muscle satellite cells during differentiation.
    Pietrangelo T; Puglielli C; Mancinelli R; Beccafico S; Fanò G; Fulle S
    Exp Gerontol; 2009 Aug; 44(8):523-31. PubMed ID: 19457451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Age-dependent effects on functional aspects in human satellite cells.
    Beccafico S; Puglielli C; Pietrangelo T; Bellomo R; Fanò G; Fulle S
    Ann N Y Acad Sci; 2007 Apr; 1100():345-52. PubMed ID: 17460197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prolonged absence of myostatin reduces sarcopenia.
    Siriett V; Platt L; Salerno MS; Ling N; Kambadur R; Sharma M
    J Cell Physiol; 2006 Dec; 209(3):866-73. PubMed ID: 16972257
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ageing affects the differentiation potential of human myoblasts.
    Lorenzon P; Bandi E; de Guarrini F; Pietrangelo T; Schäfer R; Zweyer M; Wernig A; Ruzzier F
    Exp Gerontol; 2004 Oct; 39(10):1545-54. PubMed ID: 15501025
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of human myoblast differentiation for tissue-engineering purposes by quantitative gene expression analysis.
    Stern-Straeter J; Bonaterra GA; Kassner SS; Zügel S; Hörmann K; Kinscherf R; Goessler UR
    J Tissue Eng Regen Med; 2011 Aug; 5(8):e197-206. PubMed ID: 21370490
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modifications in the myogenic program induced by in vivo and in vitro aging.
    Bortoli S; Renault V; Mariage-Samson R; Eveno E; Auffray C; Butler-Browne G; Piétu G
    Gene; 2005 Feb; 347(1):65-72. PubMed ID: 15716035
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Age-related skeletal muscle dysfunction: causes and mechanisms.
    Degens H
    J Musculoskelet Neuronal Interact; 2007; 7(3):246-52. PubMed ID: 17947808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Abortive myogenesis in denervated skeletal muscle: differentiative properties of satellite cells, their migration, and block of terminal differentiation.
    Borisov AB; Dedkov EI; Carlson BM
    Anat Embryol (Berl); 2005 Apr; 209(4):269-79. PubMed ID: 15761724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional analysis of homeodomain-containing transcription factor Lbx1 in satellite cells of mouse skeletal muscle.
    Watanabe S; Kondo S; Hayasaka M; Hanaoka K
    J Cell Sci; 2007 Dec; 120(Pt 23):4178-87. PubMed ID: 18003701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechano-biology of skeletal muscle hypertrophy and regeneration: possible mechanism of stretch-induced activation of resident myogenic stem cells.
    Tatsumi R
    Anim Sci J; 2010 Feb; 81(1):11-20. PubMed ID: 20163667
    [TBL] [Abstract][Full Text] [Related]  

  • 11. HSF expression in skeletal muscle during myogenesis: implications for failed regeneration in old mice.
    McArdle A; Broome CS; Kayani AC; Tully MD; Close GL; Vasilaki A; Jackson MJ
    Exp Gerontol; 2006 May; 41(5):497-500. PubMed ID: 16580804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human myotubes from myoblast cultures undergoing senescence exhibit defects in glucose and lipid metabolism.
    Nehlin JO; Just M; Rustan AC; Gaster M
    Biogerontology; 2011 Aug; 12(4):349-65. PubMed ID: 21512720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adapted physical exercise enhances activation and differentiation potential of satellite cells in the skeletal muscle of old mice.
    Cisterna B; Giagnacovo M; Costanzo M; Fattoretti P; Zancanaro C; Pellicciari C; Malatesta M
    J Anat; 2016 May; 228(5):771-83. PubMed ID: 26739770
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Leucine/glutamic acid/lysine protein 1 is localized to subsets of myonuclei in bovine muscle fibers and satellite cells.
    Ouellette SE; Li J; Sun W; Tsuda S; Walker DK; Hersom MJ; Johnson SE
    J Anim Sci; 2009 Oct; 87(10):3134-41. PubMed ID: 19542507
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The biology of satellite cells and telomeres in human skeletal muscle: effects of aging and physical activity.
    Kadi F; Ponsot E
    Scand J Med Sci Sports; 2010 Feb; 20(1):39-48. PubMed ID: 19765243
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pattern of Pax7 expression during myogenesis in the posthatch chicken establishes a model for satellite cell differentiation and renewal.
    Halevy O; Piestun Y; Allouh MZ; Rosser BW; Rinkevich Y; Reshef R; Rozenboim I; Wleklinski-Lee M; Yablonka-Reuveni Z
    Dev Dyn; 2004 Nov; 231(3):489-502. PubMed ID: 15390217
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The impact of sarcopenia and exercise training on skeletal muscle satellite cells.
    Snijders T; Verdijk LB; van Loon LJ
    Ageing Res Rev; 2009 Oct; 8(4):328-38. PubMed ID: 19464390
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The roles of satellite cells and hematopoietic stem cells in impaired regeneration of skeletal muscle in old rats.
    Machida S; Narusawa M
    Ann N Y Acad Sci; 2006 May; 1067():349-53. PubMed ID: 16804010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sarcopenia is more than a muscular deficit.
    Fulle S; Belia S; Di Tano G
    Arch Ital Biol; 2005 Sep; 143(3-4):229-34. PubMed ID: 16097500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation and function of skeletal muscle stem cells.
    Cerletti M; Shadrach JL; Jurga S; Sherwood R; Wagers AJ
    Cold Spring Harb Symp Quant Biol; 2008; 73():317-22. PubMed ID: 19204065
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.