These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1449 related articles for article (PubMed ID: 19457460)

  • 1. Influence of ECM proteins and their analogs on cells cultured on 2-D hydrogels for cardiac muscle tissue engineering.
    LaNasa SM; Bryant SJ
    Acta Biomater; 2009 Oct; 5(8):2929-38. PubMed ID: 19457460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein-polymer conjugates for forming photopolymerizable biomimetic hydrogels for tissue engineering.
    Gonen-Wadmany M; Oss-Ronen L; Seliktar D
    Biomaterials; 2007 Sep; 28(26):3876-86. PubMed ID: 17576008
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis, characterization and surface modification of low moduli poly(ether carbonate urethane)ureas for soft tissue engineering.
    Wang F; Li Z; Lannutti JL; Wagner WR; Guan J
    Acta Biomater; 2009 Oct; 5(8):2901-12. PubMed ID: 19433136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tailored laminin-332 alpha3 sequence is tethered through an enzymatic linker to a collagen scaffold to promote cellular adhesion.
    Damodaran G; Collighan R; Griffin M; Navsaria H; Pandit A
    Acta Biomater; 2009 Sep; 5(7):2441-50. PubMed ID: 19364681
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell adhesion and mechanical properties of a flexible scaffold for cardiac tissue engineering.
    Hidalgo-Bastida LA; Barry JJ; Everitt NM; Rose FR; Buttery LD; Hall IP; Claycomb WC; Shakesheff KM
    Acta Biomater; 2007 Jul; 3(4):457-62. PubMed ID: 17321810
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Designing scaffolds for valvular interstitial cells: cell adhesion and function on naturally derived materials.
    Masters KS; Shah DN; Walker G; Leinwand LA; Anseth KS
    J Biomed Mater Res A; 2004 Oct; 71(1):172-80. PubMed ID: 15368267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of rat mesenchymal stem cell CD44 surface markers on cell growth, fibronectin expression, and cardiomyogenic differentiation on silk fibroin - Hyaluronic acid cardiac patches.
    Yang MC; Chi NH; Chou NK; Huang YY; Chung TW; Chang YL; Liu HC; Shieh MJ; Wang SS
    Biomaterials; 2010 Feb; 31(5):854-62. PubMed ID: 19857893
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A material decoy of biological media based on chitosan physical hydrogels: application to cartilage tissue engineering.
    Montembault A; Tahiri K; Korwin-Zmijowska C; Chevalier X; Corvol MT; Domard A
    Biochimie; 2006 May; 88(5):551-64. PubMed ID: 16626850
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photopatterned collagen-hyaluronic acid interpenetrating polymer network hydrogels.
    Suri S; Schmidt CE
    Acta Biomater; 2009 Sep; 5(7):2385-97. PubMed ID: 19446050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and characterization of collagen/hyaluronan/chitosan composite sponges for potential biomedical applications.
    Lin YC; Tan FJ; Marra KG; Jan SS; Liu DC
    Acta Biomater; 2009 Sep; 5(7):2591-600. PubMed ID: 19427824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering of large cartilaginous tissues through the use of microchanneled hydrogels and rotational culture.
    Buckley CT; Thorpe SD; Kelly DJ
    Tissue Eng Part A; 2009 Nov; 15(11):3213-20. PubMed ID: 19374490
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polyurethane films seeded with embryonic stem cell-derived cardiomyocytes for use in cardiac tissue engineering applications.
    Alperin C; Zandstra PW; Woodhouse KA
    Biomaterials; 2005 Dec; 26(35):7377-86. PubMed ID: 16023195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrodynamic spinning of hydrogel fibers.
    Hu M; Deng R; Schumacher KM; Kurisawa M; Ye H; Purnamawati K; Ying JY
    Biomaterials; 2010 Feb; 31(5):863-9. PubMed ID: 19878994
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomimetic macroporous hydrogels: protein ligand distribution and cell response to the ligand architecture in the scaffold.
    Savina IN; Dainiak M; Jungvid H; Mikhalovsky SV; Galaev IY
    J Biomater Sci Polym Ed; 2009; 20(12):1781-95. PubMed ID: 19723441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of porous PEG hydrogels that enable efficient, uniform cell-seeding and permit early neural process extension.
    Namba RM; Cole AA; Bjugstad KB; Mahoney MJ
    Acta Biomater; 2009 Jul; 5(6):1884-97. PubMed ID: 19250891
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of the matrix-synthesis potential of crosslinked hyaluronan gels for tissue engineering of aortic heart valves.
    Ramamurthi A; Vesely I
    Biomaterials; 2005 Mar; 26(9):999-1010. PubMed ID: 15369688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzyme-degradable phosphorylcholine porous hydrogels cross-linked with polyphosphoesters for cell matrices.
    Wachiralarpphaithoon C; Iwasaki Y; Akiyoshi K
    Biomaterials; 2007 Feb; 28(6):984-93. PubMed ID: 17107708
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and fabrication of heart muscle using scaffold-based tissue engineering.
    Blan NR; Birla RK
    J Biomed Mater Res A; 2008 Jul; 86(1):195-208. PubMed ID: 17972281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo evaluation of MMP sensitive high-molecular weight HA-based hydrogels for bone tissue engineering.
    Kim J; Kim IS; Cho TH; Kim HC; Yoon SJ; Choi J; Park Y; Sun K; Hwang SJ
    J Biomed Mater Res A; 2010 Dec; 95(3):673-81. PubMed ID: 20725983
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aligned and random nanofibrous substrate for the in vitro culture of Schwann cells for neural tissue engineering.
    Gupta D; Venugopal J; Prabhakaran MP; Dev VR; Low S; Choon AT; Ramakrishna S
    Acta Biomater; 2009 Sep; 5(7):2560-9. PubMed ID: 19269270
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 73.