BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 19457486)

  • 41. Comparison of 3D finite element analysis derived stiffness and BMD to determine the failure load of the excised proximal femur.
    Langton CM; Pisharody S; Keyak JH
    Med Eng Phys; 2009 Jul; 31(6):668-72. PubMed ID: 19230742
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A new material mapping procedure for quantitative computed tomography-based, continuum finite element analyses of the vertebra.
    Unnikrishnan GU; Morgan EF
    J Biomech Eng; 2011 Jul; 133(7):071001. PubMed ID: 21823740
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Evaluation of vertebral bone strength with a finite element method using low dose computed tomography imaging.
    Nakanowatari K; Watanabe K; Mori K; Nakajima S; Sekine N; Mutsuzaki H
    J Orthop Sci; 2022 May; 27(3):574-581. PubMed ID: 33962857
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A low-radiation exposure protocol for 3D QCT of the spine.
    Museyko O; Heinemann A; Krause M; Wulff B; Amling M; Püschel K; Glüer CC; Kalender W; Engelke K
    Osteoporos Int; 2014 Mar; 25(3):983-92. PubMed ID: 24142100
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Assessing methods for characterising local and global structural and biomechanical properties of the trabecular bone network.
    Sidorenko I; Monetti R; Bauer J; Mueller D; Rummeny E; Eckstein F; Matsuura M; Lochmueller EM; Zysset P; Raeth C
    Curr Med Chem; 2011; 18(22):3402-9. PubMed ID: 21728960
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A finite element analysis of a T12 vertebra in two consecutive examinations to evaluate the progress of osteoporosis.
    Provatidis C; Vossou C; Petropoulou E; Balanika A; Lyritis G
    Med Eng Phys; 2009 Jul; 31(6):632-41. PubMed ID: 19186094
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Axial compressive strength of thoraco-lumbar vertebrae--an experimental biomechanical study].
    Konermann W; Stubbe F; Link T; Meier N
    Z Orthop Ihre Grenzgeb; 1999; 137(3):223-31. PubMed ID: 10441827
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Prediction of bone strength using a quantitative computed tomography based finite element method].
    Bessho M; Ohnishi I; Kaneko M; Ohashi S; Tobita K; Matsumoto T; Imai K; Nakamura K
    Clin Calcium; 2011 Jul; 21(7):1021-7. PubMed ID: 21719982
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Feasibility study of using viscoplastic bone cement for vertebroplasty: an in vivo clinical trial and in vitro cadaveric biomechanical examination.
    Lin SW; Chiang CK; Yang CL; Wang JL
    Spine (Phila Pa 1976); 2010 May; 35(10):E385-91. PubMed ID: 20393389
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Relative strength of thoracic vertebrae in axial compression versus flexion.
    Buckley JM; Kuo CC; Cheng LC; Loo K; Motherway J; Slyfield C; Deviren V; Ames C
    Spine J; 2009 Jun; 9(6):478-85. PubMed ID: 19364678
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cement distribution, volume, and compliance in vertebroplasty: some answers from an anatomy-based nonlinear finite element study.
    Chevalier Y; Pahr D; Charlebois M; Heini P; Schneider E; Zysset P
    Spine (Phila Pa 1976); 2008 Jul; 33(16):1722-30. PubMed ID: 18628704
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A CT-based high-order finite element analysis of the human proximal femur compared to in-vitro experiments.
    Yosibash Z; Padan R; Joskowicz L; Milgrom C
    J Biomech Eng; 2007 Jun; 129(3):297-309. PubMed ID: 17536896
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Premature adjacent vertebral fracture after vertebroplasty: a biomechanical study.
    Fahim DK; Sun K; Tawackoli W; Mendel E; Rhines LD; Burton AW; Kim DH; Ehni BL; Liebschner MA
    Neurosurgery; 2011 Sep; 69(3):733-44. PubMed ID: 21499145
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Prediction of vertebral body compressive fracture using quantitative computed tomography.
    McBroom RJ; Hayes WC; Edwards WT; Goldberg RP; White AA
    J Bone Joint Surg Am; 1985 Oct; 67(8):1206-14. PubMed ID: 4055845
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Calibration of the mechanical properties in a finite element model of a lumbar vertebra under dynamic compression up to failure.
    Garo A; Arnoux PJ; Wagnac E; Aubin CE
    Med Biol Eng Comput; 2011 Dec; 49(12):1371-9. PubMed ID: 21947796
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Reliable simulations of the human proximal femur by high-order finite element analysis validated by experimental observations.
    Yosibash Z; Trabelsi N; Milgrom C
    J Biomech; 2007; 40(16):3688-99. PubMed ID: 17706228
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Scanner influence on the mechanical response of QCT-based finite element analysis of long bones.
    Katz Y; Dahan G; Sosna J; Shelef I; Cherniavsky E; Yosibash Z
    J Biomech; 2019 Mar; 86():149-159. PubMed ID: 30837081
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Radio-translucent 3-axis mechanical testing rig for the spine in micro-CT.
    Si-Hoe KM; Teoh SH; Teo J
    J Biomech Eng; 2006 Dec; 128(6):957-64. PubMed ID: 17154698
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effects of Scan Resolutions and Element Sizes on Bovine Vertebral Mechanical Parameters from Quantitative Computed Tomography-Based Finite Element Analysis.
    Zhang M; Gao J; Huang X; Gong H; Zhang M; Liu B
    J Healthc Eng; 2017; 2017():5707568. PubMed ID: 29065624
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Vertebral augmentation with a novel Vessel-X bone void filling container system and bioactive bone cement.
    Zheng Z; Luk KD; Kuang G; Li Z; Lin J; Lam WM; Cheung KM; Lu WW
    Spine (Phila Pa 1976); 2007 Sep; 32(19):2076-82. PubMed ID: 17762808
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.