These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 19457489)

  • 1. Prestressing in finite deformation abdominal aortic aneurysm simulation.
    Gee MW; Reeps C; Eckstein HH; Wall WA
    J Biomech; 2009 Aug; 42(11):1732-9. PubMed ID: 19457489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The impact of model assumptions on results of computational mechanics in abdominal aortic aneurysm.
    Reeps C; Gee M; Maier A; Gurdan M; Eckstein HH; Wall WA
    J Vasc Surg; 2010 Mar; 51(3):679-88. PubMed ID: 20206812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wall stress distribution on three-dimensionally reconstructed models of human abdominal aortic aneurysm.
    Raghavan ML; Vorp DA; Federle MP; Makaroun MS; Webster MW
    J Vasc Surg; 2000 Apr; 31(4):760-9. PubMed ID: 10753284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparative study of aortic wall stress using finite element analysis for ruptured and non-ruptured abdominal aortic aneurysms.
    Venkatasubramaniam AK; Fagan MJ; Mehta T; Mylankal KJ; Ray B; Kuhan G; Chetter IC; McCollum PT
    Eur J Vasc Endovasc Surg; 2004 Aug; 28(2):168-76. PubMed ID: 15234698
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Abdominal aortic aneurysm: from clinical imaging to realistic replicas.
    de Galarreta SR; Aitor C; Antón R; Finol EA
    J Biomech Eng; 2014 Jan; 136(1):014502. PubMed ID: 24190650
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Initial stress and nonlinear material behavior in patient-specific AAA wall stress analysis.
    Speelman L; Bosboom EM; Schurink GW; Buth J; Breeuwer M; Jacobs MJ; van de Vosse FN
    J Biomech; 2009 Aug; 42(11):1713-9. PubMed ID: 19447391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A generalized prestressing algorithm for finite element simulations of preloaded geometries with application to the aorta.
    Weisbecker H; Pierce DM; Holzapfel GA
    Int J Numer Method Biomed Eng; 2014 Sep; 30(9):857-72. PubMed ID: 24596311
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of calcification and intraluminal thrombus on the computed wall stresses of abdominal aortic aneurysm.
    Li ZY; U-King-Im J; Tang TY; Soh E; See TC; Gillard JH
    J Vasc Surg; 2008 May; 47(5):928-35. PubMed ID: 18372154
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Methodology for the Derivation of Unloaded Abdominal Aortic Aneurysm Geometry With Experimental Validation.
    Chandra S; Gnanaruban V; Riveros F; Rodriguez JF; Finol EA
    J Biomech Eng; 2016 Oct; 138(10):1010051-10100511. PubMed ID: 27538124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High levels of 18F-FDG uptake in aortic aneurysm wall are associated with high wall stress.
    Xu XY; Borghi A; Nchimi A; Leung J; Gomez P; Cheng Z; Defraigne JO; Sakalihasan N
    Eur J Vasc Endovasc Surg; 2010 Mar; 39(3):295-301. PubMed ID: 19926315
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluid-structure interaction in abdominal aortic aneurysms: effects of asymmetry and wall thickness.
    Scotti CM; Shkolnik AD; Muluk SC; Finol EA
    Biomed Eng Online; 2005 Nov; 4():64. PubMed ID: 16271141
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluid, solid and fluid-structure interaction simulations on patient-based abdominal aortic aneurysm models.
    Kelly S; O'Rourke M
    Proc Inst Mech Eng H; 2012 Apr; 226(4):288-304. PubMed ID: 22611869
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluid structure interaction of patient specific abdominal aortic aneurysms: a comparison with solid stress models.
    Leung JH; Wright AR; Cheshire N; Crane J; Thom SA; Hughes AD; Xu Y
    Biomed Eng Online; 2006 May; 5():33. PubMed ID: 16712729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computation for biomechanical analysis of aortic aneurysms: the importance of computational grid.
    Alkhatib F; Wittek A; Zwick BF; Bourantas GC; Miller K
    Comput Methods Biomech Biomed Engin; 2024 Jun; 27(8):994-1010. PubMed ID: 37264784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modelling of residually stressed materials with application to AAA.
    Ahamed T; Dorfmann L; Ogden RW
    J Mech Behav Biomed Mater; 2016 Aug; 61():221-234. PubMed ID: 26874252
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Finite element and photoelastic modelling of an abdominal aortic aneurysm: a comparative study.
    Callanan A; Morris LG; McGloughlin TM
    Comput Methods Biomech Biomed Engin; 2012; 15(10):1111-9. PubMed ID: 21660780
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wall stress and flow dynamics in abdominal aortic aneurysms: finite element analysis vs. fluid-structure interaction.
    Scotti CM; Jimenez J; Muluk SC; Finol EA
    Comput Methods Biomech Biomed Engin; 2008 Jun; 11(3):301-22. PubMed ID: 18568827
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intraluminal thrombus and risk of rupture in patient specific abdominal aortic aneurysm - FSI modelling.
    Bluestein D; Dumont K; De Beule M; Ricotta J; Impellizzeri P; Verhegghe B; Verdonck P
    Comput Methods Biomech Biomed Engin; 2009 Feb; 12(1):73-81. PubMed ID: 18651282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flow patterns and wall shear stresses in patient-specific models of the abdominal aortic aneurysm.
    Leung J; Wright A; Cheshire N; Thom SA; Hughes AD; Xu XY
    Stud Health Technol Inform; 2004; 103():235-42. PubMed ID: 15747926
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Importance of initial stress for abdominal aortic aneurysm wall motion: dynamic MRI validated finite element analysis.
    Merkx MA; van 't Veer M; Speelman L; Breeuwer M; Buth J; van de Vosse FN
    J Biomech; 2009 Oct; 42(14):2369-73. PubMed ID: 19665127
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.