BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 19457739)

  • 1. Advances in the 3-D forward-backward time-stepping (FBTS) inverse scattering technique for breast cancer detection.
    Johnson JE; Takenaka T; Ping KA; Honda S; Tanaka T
    IEEE Trans Biomed Eng; 2009 Sep; 56(9):2232-43. PubMed ID: 19457739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microwave breast imaging: 3-D forward scattering simulation.
    Zhang ZQ; Liu QH; Xiao C; Ward E; Ybarra G; Joines WT
    IEEE Trans Biomed Eng; 2003 Oct; 50(10):1180-9. PubMed ID: 14560772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Confocal microwave imaging for breast cancer detection: localization of tumors in three dimensions.
    Fear EC; Li X; Hagness SC; Stuchly MA
    IEEE Trans Biomed Eng; 2002 Aug; 49(8):812-22. PubMed ID: 12148820
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resonant spectra of malignant breast cancer tumors using the three-dimensional electromagnetic fast multipole model.
    El-Shenawee M
    IEEE Trans Biomed Eng; 2004 Jan; 51(1):35-44. PubMed ID: 14723492
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrawideband microwave breast cancer detection: a detection-theoretic approach using the generalized likelihood ratio test.
    Davis SK; Tandradinata H; Hagness SC; Van Veen BD
    IEEE Trans Biomed Eng; 2005 Jul; 52(7):1237-50. PubMed ID: 16041987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional nonlinear image reconstruction for microwave biomedical imaging.
    Zhang ZQ; Liu QH
    IEEE Trans Biomed Eng; 2004 Mar; 51(3):544-8. PubMed ID: 15000387
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-dimensional time-domain inverse scattering for quantitative analysis of breast composition.
    Johnson JE; Takenaka T; Tanaka T
    IEEE Trans Biomed Eng; 2008 Aug; 55(8):1941-5. PubMed ID: 18632356
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microwave imaging for early breast cancer detection using a shape-based strategy.
    Irishina N; Moscoso M; Dorn O
    IEEE Trans Biomed Eng; 2009 Apr; 56(4):1143-53. PubMed ID: 19174336
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of the no-sampling linear sampling method to breast cancer detection.
    Bozza G; Brignone M; Pastorino M
    IEEE Trans Biomed Eng; 2010 Oct; 57(10):2525-34. PubMed ID: 20595076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of electromagnetic field distributions inside biological bodies by using an inverse scattering procedure based on a statistical cooling algorithm.
    Caorsi S; Massa A
    Bioelectromagnetics; 2000 Sep; 21(6):422-31. PubMed ID: 10972946
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of 3D modality-independent elastography for breast imaging: a simulation study.
    Ou JJ; Ong RE; Yankeelov TE; Miga MI
    Phys Med Biol; 2008 Jan; 53(1):147-63. PubMed ID: 18182693
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3-D-microwave breast tumor detection: study of system performance.
    de Lorenzo Rodríguez ME; Vera-Isasa M; Santalla del Río V
    IEEE Trans Biomed Eng; 2008 Dec; 55(12):2772-7. PubMed ID: 19126457
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multistatic adaptive microwave imaging for early breast cancer detection.
    Xie Y; Guo B; Xu L; Li J; Stoica P
    IEEE Trans Biomed Eng; 2006 Aug; 53(8):1647-57. PubMed ID: 16916099
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional microwave imaging of realistic numerical breast phantoms via a multiple-frequency inverse scattering technique.
    Shea JD; Kosmas P; Hagness SC; Van Veen BD
    Med Phys; 2010 Aug; 37(8):4210-26. PubMed ID: 20879582
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A mathematical model for breast cancer lesion estimation: electrical impedance technique using TS2000 commercial system.
    Seo JK; Kwon O; Ammari H; Woo EJ
    IEEE Trans Biomed Eng; 2004 Nov; 51(11):1898-906. PubMed ID: 15536891
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Basic setup for breast conductivity imaging using magnetic resonance electrical impedance tomography.
    Lee BI; Oh SH; Kim TS; Woo EJ; Lee SY; Kwon O; Seo JK
    Phys Med Biol; 2006 Jan; 51(2):443-55. PubMed ID: 16394349
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Noninvasive imaging of bioimpedance distribution by means of current reconstruction magnetic resonance electrical impedance tomography.
    Gao N; He B
    IEEE Trans Biomed Eng; 2008 May; 55(5):1530-8. PubMed ID: 18440899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contrast enhancement and tissues classification of breast MRI using Kalman filter-based linear mixing method.
    Yang SC; Wang CM; Hsu HH; Chung PC; Hsu GC; Juan CJ; Lo CS
    Comput Med Imaging Graph; 2009 Apr; 33(3):187-96. PubMed ID: 19135862
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of lesion morphology on microwave signature in 2-D ultra-wideband breast imaging.
    Chen Y; Gunawan E; Low KS; Wang SC; Soh CB; Putti TC
    IEEE Trans Biomed Eng; 2008 Aug; 55(8):2011-21. PubMed ID: 18632364
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A constrained modulus reconstruction technique for breast cancer assessment.
    Samani A; Bishop J; Plewes DB
    IEEE Trans Med Imaging; 2001 Sep; 20(9):877-85. PubMed ID: 11585205
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.