These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 19457753)

  • 1. Humans can integrate force feedback to toes in their sensorimotor control of a robotic hand.
    Panarese A; Edin BB; Vecchi F; Carrozza MC; Johansson RS
    IEEE Trans Neural Syst Rehabil Eng; 2009 Dec; 17(6):560-7. PubMed ID: 19457753
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bio-inspired sensorization of a biomechatronic robot hand for the grasp-and-lift task.
    Edin BB; Ascari L; Beccai L; Roccella S; Cabibihan JJ; Carrozza MC
    Brain Res Bull; 2008 Apr; 75(6):785-95. PubMed ID: 18394525
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-time haptic-teleoperated robotic system for motor control analysis.
    Shull PB; Gonzalez RV
    J Neurosci Methods; 2006 Mar; 151(2):194-9. PubMed ID: 16153712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of sensory substitution on suture-manipulation forces for robotic surgical systems.
    Kitagawa M; Dokko D; Okamura AM; Yuh DD
    J Thorac Cardiovasc Surg; 2005 Jan; 129(1):151-8. PubMed ID: 15632837
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visual cues signaling object grasp reduce interference in motor learning.
    Cothros N; Wong J; Gribble PL
    J Neurophysiol; 2009 Oct; 102(4):2112-20. PubMed ID: 19657075
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and testing of a tactile feedback system for robotic surgery.
    Grundfest WS; Culjat MO; King CH; Franco ML; Wottawa C; Lewis CE; Bisley JW; Dutson EP
    Stud Health Technol Inform; 2009; 142():103-8. PubMed ID: 19377124
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bio-inspired grasp control in a robotic hand with massive sensorial input.
    Ascari L; Bertocchi U; Corradi P; Laschi C; Dario P
    Biol Cybern; 2009 Feb; 100(2):109-28. PubMed ID: 19066937
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of Magnetorheological fluid in a force feedback glove.
    Winter SH; Bouzit M
    IEEE Trans Neural Syst Rehabil Eng; 2007 Mar; 15(1):2-8. PubMed ID: 17436869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robotics of human movements.
    van der Smagt P; Grebenstein M; Urbanek H; Fligge N; Strohmayr M; Stillfried G; Parrish J; Gustus A
    J Physiol Paris; 2009; 103(3-5):119-32. PubMed ID: 19686847
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Force feedback requirements for efficient laparoscopic grasp control.
    Westebring-van der Putten EP; van den Dobbelsteen JJ; Goossens RH; Jakimowicz JJ; Dankelman J
    Ergonomics; 2009 Sep; 52(9):1055-66. PubMed ID: 19662556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tactile Feedback of Object Slip Facilitates Virtual Object Manipulation.
    Walker JM; Blank AA; Shewokis PA; OMalley MK
    IEEE Trans Haptics; 2015; 8(4):454-66. PubMed ID: 25861087
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Online electromyographic control of a robotic prosthesis.
    Shenoy P; Miller KJ; Crawford B; Rao RN
    IEEE Trans Biomed Eng; 2008 Mar; 55(3):1128-35. PubMed ID: 18334405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An integrated pneumatic tactile feedback actuator array for robotic surgery.
    Franco ML; King CH; Culjat MO; Lewis CE; Bisley JW; Holmes EC; Grundfest WS; Dutson EP
    Int J Med Robot; 2009 Mar; 5(1):13-9. PubMed ID: 19086011
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discrete Vibro-Tactile Feedback Prevents Object Slippage in Hand Prostheses More Intuitively Than Other Modalities.
    Aboseria M; Clemente F; Engels LF; Cipriani C
    IEEE Trans Neural Syst Rehabil Eng; 2018 Aug; 26(8):1577-1584. PubMed ID: 29994712
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving contact realism through event-based haptic feedback.
    Kuchenbecker KJ; Fiene J; Niemeyer G
    IEEE Trans Vis Comput Graph; 2006; 12(2):219-30. PubMed ID: 16509381
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-day training with vibrotactile feedback for virtual object manipulation.
    An Q; Matsuoka Y; Stepp CE
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975337. PubMed ID: 22275542
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A method to study precision grip control in viscoelastic force fields using a robotic gripper.
    Lambercy O; Metzger JC; Santello M; Gassert R
    IEEE Trans Biomed Eng; 2015 Jan; 62(1):39-48. PubMed ID: 25014953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Slip speed feedback for grip force control.
    Damian DD; Arita AH; Martinez H; Pfeifer R
    IEEE Trans Biomed Eng; 2012 Aug; 59(8):2200-10. PubMed ID: 22614517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Humans can integrate feedback of discrete events in their sensorimotor control of a robotic hand.
    Cipriani C; Segil JL; Clemente F; ff Weir RF; Edin B
    Exp Brain Res; 2014 Nov; 232(11):3421-9. PubMed ID: 24992899
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of digital anesthesia on force control using a precision grip.
    Monzée J; Lamarre Y; Smith AM
    J Neurophysiol; 2003 Feb; 89(2):672-83. PubMed ID: 12574445
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.