These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
234 related articles for article (PubMed ID: 19457753)
21. Applications of tactile feedback in medicine. Wottawa C; Fan R; Bisley JW; Dutson EP; Culjat MO; Grundfest WS Stud Health Technol Inform; 2011; 163():703-9. PubMed ID: 21335884 [TBL] [Abstract][Full Text] [Related]
22. Vibrotactile sensory substitution for electromyographic control of object manipulation. Rombokas E; Stepp CE; Chang C; Malhotra M; Matsuoka Y IEEE Trans Biomed Eng; 2013 Aug; 60(8):2226-32. PubMed ID: 23508245 [TBL] [Abstract][Full Text] [Related]
23. Functional evaluation of natural sensory feedback incorporated in a hand grasp neuroprosthesis. Inmann A; Haugland M Med Eng Phys; 2004 Jul; 26(6):439-47. PubMed ID: 15234680 [TBL] [Abstract][Full Text] [Related]
24. The role of feed-forward and feedback processes for closed-loop prosthesis control. Saunders I; Vijayakumar S J Neuroeng Rehabil; 2011 Oct; 8():60. PubMed ID: 22032545 [TBL] [Abstract][Full Text] [Related]
25. Continuous supplementary tactile feedback can be applied (and then removed) to enhance precision manipulation. Cappello L; Alghilan W; Gabardi M; Leonardis D; Barsotti M; Frisoli A; Cipriani C J Neuroeng Rehabil; 2020 Aug; 17(1):120. PubMed ID: 32859222 [TBL] [Abstract][Full Text] [Related]
26. Motor imagery and action observation: modulation of sensorimotor brain rhythms during mental control of a brain-computer interface. Neuper C; Scherer R; Wriessnegger S; Pfurtscheller G Clin Neurophysiol; 2009 Feb; 120(2):239-47. PubMed ID: 19121977 [TBL] [Abstract][Full Text] [Related]
27. HazBot: Development of a telemanipulator robot with haptics for emergency response. Jurmain JC; Blancero AJ; Geiling JA; Bennett A; Jones C; Berkley J; Vollenweider M; Minsky M; Bowersox JC; Rosen JM Am J Disaster Med; 2008; 3(2):87-97. PubMed ID: 18522250 [TBL] [Abstract][Full Text] [Related]
28. Design and technical construction of a tactile display for sensory feedback in a hand prosthesis system. Antfolk C; Balkenius C; Lundborg G; Rosén B; Sebelius F Biomed Eng Online; 2010 Sep; 9():50. PubMed ID: 20840758 [TBL] [Abstract][Full Text] [Related]
29. Human-inspired feedback synergies for environmental interaction with a dexterous robotic hand. Kent BA; Engeberg ED Bioinspir Biomim; 2014 Nov; 9(4):046008. PubMed ID: 25378229 [TBL] [Abstract][Full Text] [Related]
30. Evaluation of a graphic interface to control a robotic grasping arm: a multicenter study. Laffont I; Biard N; Chalubert G; Delahoche L; Marhic B; Boyer FC; Leroux C Arch Phys Med Rehabil; 2009 Oct; 90(10):1740-8. PubMed ID: 19801065 [TBL] [Abstract][Full Text] [Related]
31. Tactile feedback is an effective instrument for the training of grasping with a prosthesis at low- and medium-force levels. De Nunzio AM; Dosen S; Lemling S; Markovic M; Schweisfurth MA; Ge N; Graimann B; Falla D; Farina D Exp Brain Res; 2017 Aug; 235(8):2547-2559. PubMed ID: 28550423 [TBL] [Abstract][Full Text] [Related]
32. Optimization of a pneumatic balloon tactile display for robot-assisted surgery based on human perception. King CH; Culjat MO; Franco ML; Bisley JW; Dutson E; Grundfest WS IEEE Trans Biomed Eng; 2008 Nov; 55(11):2593-600. PubMed ID: 18990629 [TBL] [Abstract][Full Text] [Related]
33. Precision grip function after free toe transfer in children with hypoplastic digits. Schenker M; Wiberg M; Kay SP; Johansson RS J Plast Reconstr Aesthet Surg; 2007; 60(1):13-23. PubMed ID: 17126262 [TBL] [Abstract][Full Text] [Related]
34. Force feedback facilitates multisensory integration during robotic tool use. Sengül A; Rognini G; van Elk M; Aspell JE; Bleuler H; Blanke O Exp Brain Res; 2013 Jun; 227(4):497-507. PubMed ID: 23625046 [TBL] [Abstract][Full Text] [Related]
35. Human's Capability to Discriminate Spatial Forces at the Big Toe. Hagengruber A; Höppner H; Vogel J Front Neurorobot; 2018; 12():13. PubMed ID: 29692718 [TBL] [Abstract][Full Text] [Related]
36. Importance of cutaneous feedback in maintaining a secure grip during manipulation of hand-held objects. Augurelle AS; Smith AM; Lejeune T; Thonnard JL J Neurophysiol; 2003 Feb; 89(2):665-71. PubMed ID: 12574444 [TBL] [Abstract][Full Text] [Related]
37. Adding vibrotactile feedback to a myoelectric-controlled hand improves performance when online visual feedback is disturbed. Raveh E; Portnoy S; Friedman J Hum Mov Sci; 2018 Apr; 58():32-40. PubMed ID: 29353091 [TBL] [Abstract][Full Text] [Related]
38. Evidence for the involvement of the posterior parietal cortex in coordination of fingertip forces for grasp stability in manipulation. Ehrsson HH; Fagergren A; Johansson RS; Forssberg H J Neurophysiol; 2003 Nov; 90(5):2978-86. PubMed ID: 14615423 [TBL] [Abstract][Full Text] [Related]
39. Cortical control of a prosthetic arm for self-feeding. Velliste M; Perel S; Spalding MC; Whitford AS; Schwartz AB Nature; 2008 Jun; 453(7198):1098-101. PubMed ID: 18509337 [TBL] [Abstract][Full Text] [Related]
40. Improving internal model strength and performance of prosthetic hands using augmented feedback. Shehata AW; Engels LF; Controzzi M; Cipriani C; Scheme EJ; Sensinger JW J Neuroeng Rehabil; 2018 Jul; 15(1):70. PubMed ID: 30064477 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]