BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 19457992)

  • 1. Modulation of human immunodeficiency virus type 1 protease autoprocessing by charge properties of surface residue 69.
    Huang L; Sayer JM; Swinford M; Louis JM; Chen C
    J Virol; 2009 Aug; 83(15):7789-93. PubMed ID: 19457992
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cysteine 95 and other residues influence the regulatory effects of Histidine 69 mutations on Human Immunodeficiency Virus Type 1 protease autoprocessing.
    Huang L; Hall A; Chen C
    Retrovirology; 2010 Mar; 7():24. PubMed ID: 20331855
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flexible catalytic site conformations implicated in modulation of HIV-1 protease autoprocessing reactions.
    Huang L; Li Y; Chen C
    Retrovirology; 2011 Oct; 8():79. PubMed ID: 21985091
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Functional Interplay between Human Immunodeficiency Virus Type 1 Protease Residues 77 and 93 Involved in Differential Regulation of Precursor Autoprocessing and Mature Protease Activity.
    Counts CJ; Ho PS; Donlin MJ; Tavis JE; Chen C
    PLoS One; 2015; 10(4):e0123561. PubMed ID: 25893662
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Terminal interface conformations modulate dimer stability prior to amino terminal autoprocessing of HIV-1 protease.
    Agniswamy J; Sayer JM; Weber IT; Louis JM
    Biochemistry; 2012 Feb; 51(5):1041-50. PubMed ID: 22242794
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visualizing transient events in amino-terminal autoprocessing of HIV-1 protease.
    Tang C; Louis JM; Aniana A; Suh JY; Clore GM
    Nature; 2008 Oct; 455(7213):693-6. PubMed ID: 18833280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Autoprocessing of HIV-1 protease is tightly coupled to protein folding.
    Louis JM; Clore GM; Gronenborn AM
    Nat Struct Biol; 1999 Sep; 6(9):868-75. PubMed ID: 10467100
    [TBL] [Abstract][Full Text] [Related]  

  • 8. HIV-1 protease with leucine zipper fused at N-terminus exhibits enhanced linker amino acid-dependent activity.
    Yu FH; Wang CT
    Retrovirology; 2018 Apr; 15(1):32. PubMed ID: 29655366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Context-dependent autoprocessing of human immunodeficiency virus type 1 protease precursors.
    Tien C; Huang L; Watanabe SM; Speidel JT; Carter CA; Chen C
    PLoS One; 2018; 13(1):e0191372. PubMed ID: 29338056
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteolytic activity of novel human immunodeficiency virus type 1 proteinase proteins from a precursor with a blocking mutation at the N terminus of the PR domain.
    Zybarth G; Kräusslich HG; Partin K; Carter C
    J Virol; 1994 Jan; 68(1):240-50. PubMed ID: 8254734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Domains upstream of the protease (PR) in human immunodeficiency virus type 1 Gag-Pol influence PR autoprocessing.
    Zybarth G; Carter C
    J Virol; 1995 Jun; 69(6):3878-84. PubMed ID: 7745738
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The virus-associated human immunodeficiency virus type 1 Gag-Pol carrying an active protease domain in the matrix region is severely defective both in autoprocessing and in trans processing of gag particles.
    Chen SW; Chiu HC; Liao WH; Wang FD; Chen SS; Wang CT
    Virology; 2004 Jan; 318(2):534-41. PubMed ID: 14972522
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binding of Clinical Inhibitors to a Model Precursor of a Rationally Selected Multidrug Resistant HIV-1 Protease Is Significantly Weaker Than That to the Released Mature Enzyme.
    Park JH; Sayer JM; Aniana A; Yu X; Weber IT; Harrison RW; Louis JM
    Biochemistry; 2016 Apr; 55(16):2390-400. PubMed ID: 27039930
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutations Proximal to Sites of Autoproteolysis and the α-Helix That Co-evolve under Drug Pressure Modulate the Autoprocessing and Vitality of HIV-1 Protease.
    Louis JM; Deshmukh L; Sayer JM; Aniana A; Clore GM
    Biochemistry; 2015 Sep; 54(35):5414-24. PubMed ID: 26266692
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Autoprocessing of human immunodeficiency virus type 1 protease miniprecursor fusions in mammalian cells.
    Huang L; Chen C
    AIDS Res Ther; 2010 Jul; 7():27. PubMed ID: 20667109
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human immunodeficiency virus (HIV) type 1 transframe protein can restore activity to a dimerization-deficient HIV protease variant.
    Dautin N; Karimova G; Ladant D
    J Virol; 2003 Aug; 77(15):8216-26. PubMed ID: 12857890
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of dissociative inhibition of HIV protease and its autoprocessing from a precursor.
    Sayer JM; Aniana A; Louis JM
    J Mol Biol; 2012 Sep; 422(2):230-44. PubMed ID: 22659320
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Autocatalytic maturation, physical/chemical properties, and crystal structure of group N HIV-1 protease: relevance to drug resistance.
    Sayer JM; Agniswamy J; Weber IT; Louis JM
    Protein Sci; 2010 Nov; 19(11):2055-72. PubMed ID: 20737578
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of human immunodeficiency virus type 1 transframe protein p6* mutations on viral protease-mediated Gag processing.
    Chiu HC; Wang FD; Chen YA; Wang CT
    J Gen Virol; 2006 Jul; 87(Pt 7):2041-2046. PubMed ID: 16760407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding HIV-1 protease autoprocessing for novel therapeutic development.
    Huang L; Chen C
    Future Med Chem; 2013 Jul; 5(11):1215-29. PubMed ID: 23859204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.