These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 19458083)
1. A negative feedback control of transforming growth factor-beta signaling by glycogen synthase kinase 3-mediated Smad3 linker phosphorylation at Ser-204. Millet C; Yamashita M; Heller M; Yu LR; Veenstra TD; Zhang YE J Biol Chem; 2009 Jul; 284(30):19808-16. PubMed ID: 19458083 [TBL] [Abstract][Full Text] [Related]
2. Phosphorylation status at Smad3 linker region modulates transforming growth factor-β-induced epithelial-mesenchymal transition and cancer progression. Ooshima A; Park J; Kim SJ Cancer Sci; 2019 Feb; 110(2):481-488. PubMed ID: 30589983 [TBL] [Abstract][Full Text] [Related]
3. Axin and GSK3- control Smad3 protein stability and modulate TGF- signaling. Guo X; Ramirez A; Waddell DS; Li Z; Liu X; Wang XF Genes Dev; 2008 Jan; 22(1):106-20. PubMed ID: 18172167 [TBL] [Abstract][Full Text] [Related]
4. Transforming growth factor-{beta}-inducible phosphorylation of Smad3. Wang G; Matsuura I; He D; Liu F J Biol Chem; 2009 Apr; 284(15):9663-73. PubMed ID: 19218245 [TBL] [Abstract][Full Text] [Related]
5. Non-canonical Smads phosphorylation induced by the glutamate release inhibitor, riluzole, through GSK3 activation in melanoma. Abushahba W; Olabisi OO; Jeong BS; Boregowda RK; Wen Y; Liu F; Goydos JS; Lasfar A; Cohen-Solal KA PLoS One; 2012; 7(10):e47312. PubMed ID: 23077590 [TBL] [Abstract][Full Text] [Related]
6. c-Jun N-terminal kinase 1 promotes transforming growth factor-β1-induced epithelial-to-mesenchymal transition via control of linker phosphorylation and transcriptional activity of Smad3. Velden JL; Alcorn JF; Guala AS; Badura EC; Janssen-Heininger YM Am J Respir Cell Mol Biol; 2011 Apr; 44(4):571-81. PubMed ID: 20581097 [TBL] [Abstract][Full Text] [Related]
7. The phosphorylation of the Smad2/3 linker region by nemo-like kinase regulates TGF-β signaling. Liang J; Zhou Y; Zhang N; Wang D; Cheng X; Li K; Huang R; Lu Y; Wang H; Han D; Wu W; Han M; Miao S; Wang L; Zhao H; Song W J Biol Chem; 2021; 296():100512. PubMed ID: 33676893 [TBL] [Abstract][Full Text] [Related]
8. Small C-terminal domain phosphatases dephosphorylate the regulatory linker regions of Smad2 and Smad3 to enhance transforming growth factor-beta signaling. Wrighton KH; Willis D; Long J; Liu F; Lin X; Feng XH J Biol Chem; 2006 Dec; 281(50):38365-75. PubMed ID: 17035229 [TBL] [Abstract][Full Text] [Related]
9. Novel regulation of Smad3 oligomerization and DNA binding by its linker domain. Vasilaki E; Siderakis M; Papakosta P; Skourti-Stathaki K; Mavridou S; Kardassis D Biochemistry; 2009 Sep; 48(35):8366-78. PubMed ID: 19645436 [TBL] [Abstract][Full Text] [Related]
11. Potentiation of Smad transactivation by Jun proteins during a combined treatment with epidermal growth factor and transforming growth factor-beta in rat hepatocytes. role of phosphatidylinositol 3-kinase-induced AP-1 activation. Peron P; Rahmani M; Zagar Y; Durand-Schneider AM; Lardeux B; Bernuau D J Biol Chem; 2001 Mar; 276(13):10524-31. PubMed ID: 11134003 [TBL] [Abstract][Full Text] [Related]
12. Impaired mammary tumor formation and metastasis by the point mutation of a Smad3 linker phosphorylation site. Huang CC; Huang MS; Chung HJ; Chiu SY; Yadav P; Lin Y; Liu F; Matsuura I Biochim Biophys Acta Mol Basis Dis; 2018 Nov; 1864(11):3664-3671. PubMed ID: 30251686 [TBL] [Abstract][Full Text] [Related]
13. Glycogen synthase kinase-3beta negatively regulates TGF-beta1 and Angiotensin II-mediated cellular activity through interaction with Smad3. Hua F; Zhou J; Liu J; Zhu C; Cui B; Lin H; Liu Y; Jin W; Yang H; Hu Z Eur J Pharmacol; 2010 Oct; 644(1-3):17-23. PubMed ID: 20599907 [TBL] [Abstract][Full Text] [Related]
14. The transcriptional co-activator P/CAF potentiates TGF-beta/Smad signaling. Itoh S; Ericsson J; Nishikawa J; Heldin CH; ten Dijke P Nucleic Acids Res; 2000 Nov; 28(21):4291-8. PubMed ID: 11058129 [TBL] [Abstract][Full Text] [Related]
15. Transforming growth factor beta-induced phosphorylation of Smad3 is required for growth inhibition and transcriptional induction in epithelial cells. Liu X; Sun Y; Constantinescu SN; Karam E; Weinberg RA; Lodish HF Proc Natl Acad Sci U S A; 1997 Sep; 94(20):10669-74. PubMed ID: 9380693 [TBL] [Abstract][Full Text] [Related]
16. YAP/TAZ regulates TGF-β/Smad3 signaling by induction of Smad7 via AP-1 in human skin dermal fibroblasts. Qin Z; Xia W; Fisher GJ; Voorhees JJ; Quan T Cell Commun Signal; 2018 Apr; 16(1):18. PubMed ID: 29695252 [TBL] [Abstract][Full Text] [Related]
17. ATF-2 is a common nuclear target of Smad and TAK1 pathways in transforming growth factor-beta signaling. Sano Y; Harada J; Tashiro S; Gotoh-Mandeville R; Maekawa T; Ishii S J Biol Chem; 1999 Mar; 274(13):8949-57. PubMed ID: 10085140 [TBL] [Abstract][Full Text] [Related]
18. Runx2/Smad3 complex negatively regulates TGF-β-induced connective tissue growth factor gene expression in vascular smooth muscle cells. Ohyama Y; Tanaka T; Shimizu T; Matsui H; Sato H; Koitabashi N; Doi H; Iso T; Arai M; Kurabayashi M J Atheroscler Thromb; 2012; 19(1):23-35. PubMed ID: 21986102 [TBL] [Abstract][Full Text] [Related]
19. Smad3 linker phosphorylation attenuates Smad3 transcriptional activity and TGF-β1/Smad3-induced epithelial-mesenchymal transition in renal epithelial cells. Bae E; Kim SJ; Hong S; Liu F; Ooshima A Biochem Biophys Res Commun; 2012 Oct; 427(3):593-9. PubMed ID: 23022526 [TBL] [Abstract][Full Text] [Related]
20. Pin1 promotes transforming growth factor-beta-induced migration and invasion. Matsuura I; Chiang KN; Lai CY; He D; Wang G; Ramkumar R; Uchida T; Ryo A; Lu K; Liu F J Biol Chem; 2010 Jan; 285(3):1754-64. PubMed ID: 19920136 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]