These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

657 related articles for article (PubMed ID: 19458142)

  • 1. Beta-range EEG-EMG coherence with isometric compensation for increasing modulated low-level forces.
    Chakarov V; Naranjo JR; Schulte-Mönting J; Omlor W; Huethe F; Kristeva R
    J Neurophysiol; 2009 Aug; 102(2):1115-20. PubMed ID: 19458142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of human corticomuscular beta-range coherence with low-level static forces.
    Witte M; Patino L; Andrykiewicz A; Hepp-Reymond MC; Kristeva R
    Eur J Neurosci; 2007 Dec; 26(12):3564-70. PubMed ID: 18052988
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Absence of gamma-range corticomuscular coherence during dynamic force in a deafferented patient.
    Patino L; Omlor W; Chakarov V; Hepp-Reymond MC; Kristeva R
    J Neurophysiol; 2008 Apr; 99(4):1906-16. PubMed ID: 18272868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Beta-range cortical motor spectral power and corticomuscular coherence as a mechanism for effective corticospinal interaction during steady-state motor output.
    Kristeva R; Patino L; Omlor W
    Neuroimage; 2007 Jul; 36(3):785-92. PubMed ID: 17493837
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gamma-range corticomuscular coherence during dynamic force output.
    Omlor W; Patino L; Hepp-Reymond MC; Kristeva R
    Neuroimage; 2007 Feb; 34(3):1191-8. PubMed ID: 17182258
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Corticospinal interaction during isometric compensation for modulated forces with different frequencies.
    Naranjo JR; Wang X; Schulte-Mönting J; Huethe F; Maurer C; Hepp-Reymond MC; Kristeva R
    BMC Neurosci; 2010 Dec; 11():157. PubMed ID: 21194447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Corticomuscular synchronization with small and large dynamic force output.
    Andrykiewicz A; Patino L; Naranjo JR; Witte M; Hepp-Reymond MC; Kristeva R
    BMC Neurosci; 2007 Nov; 8():101. PubMed ID: 18042289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The strength of the corticospinal coherence depends on the predictability of modulated isometric forces.
    Mendez-Balbuena I; Naranjo JR; Wang X; Andrykiewicz A; Huethe F; Schulte-Mönting J; Hepp-Reymond MC; Kristeva R
    J Neurophysiol; 2013 Mar; 109(6):1579-88. PubMed ID: 23255723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Muscle fatigue-induced enhancement of corticomuscular coherence following sustained submaximal isometric contraction of the tibialis anterior muscle.
    Ushiyama J; Katsu M; Masakado Y; Kimura A; Liu M; Ushiba J
    J Appl Physiol (1985); 2011 May; 110(5):1233-40. PubMed ID: 21393470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Between-subject variance in the magnitude of corticomuscular coherence during tonic isometric contraction of the tibialis anterior muscle in healthy young adults.
    Ushiyama J; Suzuki T; Masakado Y; Hase K; Kimura A; Liu M; Ushiba J
    J Neurophysiol; 2011 Sep; 106(3):1379-88. PubMed ID: 21653712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of visual stimulation on cortico-spinal coherence during isometric hand contraction in humans.
    Safri NM; Murayama N; Igasaki T; Hayashida Y
    Int J Psychophysiol; 2006 Aug; 61(2):288-93. PubMed ID: 16644045
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Corticomuscular coherence reflects interindividual differences in the state of the corticomuscular network during low-level static and dynamic forces.
    Mendez-Balbuena I; Huethe F; Schulte-Mönting J; Leonhart R; Manjarrez E; Kristeva R
    Cereb Cortex; 2012 Mar; 22(3):628-38. PubMed ID: 21685397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contraction level-related modulation of corticomuscular coherence differs between the tibialis anterior and soleus muscles in humans.
    Ushiyama J; Masakado Y; Fujiwara T; Tsuji T; Hase K; Kimura A; Liu M; Ushiba J
    J Appl Physiol (1985); 2012 Apr; 112(8):1258-67. PubMed ID: 22302959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oscillatory interaction between the hand area of human primary motor cortex and finger muscles during steady-state isometric contraction.
    Lim M; Kim JS; Chung CK
    Clin Neurophysiol; 2011 Nov; 122(11):2246-53. PubMed ID: 21493129
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coherence of EMG activity and single motor unit discharge patterns in human rhythmical force production.
    Sosnoff JJ; Vaillancourt DE; Larsson L; Newell KM
    Behav Brain Res; 2005 Mar; 158(2):301-10. PubMed ID: 15698897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of concurrent visual tasks on cortico-muscular synchronization in humans.
    Mat Safri N; Murayama N; Hayashida Y; Igasaki T
    Brain Res; 2007 Jun; 1155():81-92. PubMed ID: 17512919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnification of visual feedback modulates corticomuscular and intermuscular coherences differently in young and elderly adults.
    Watanabe T; Nojima I; Mima T; Sugiura H; Kirimoto H
    Neuroimage; 2020 Oct; 220():117089. PubMed ID: 32592849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of attention and precision of exerted force on beta range EEG-EMG synchronization during a maintained motor contraction task.
    Kristeva-Feige R; Fritsch C; Timmer J; Lücking CH
    Clin Neurophysiol; 2002 Jan; 113(1):124-31. PubMed ID: 11801434
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neurophysiological, behavioural and perceptual differences between wrist flexion and extension related to sensorimotor monitoring as shown by corticomuscular coherence.
    Divekar NV; John LR
    Clin Neurophysiol; 2013 Jan; 124(1):136-47. PubMed ID: 22959414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prolonged reaction time during episodes of elevated β-band corticomuscular coupling and associated oscillatory muscle activity.
    Matsuya R; Ushiyama J; Ushiba J
    J Appl Physiol (1985); 2013 Apr; 114(7):896-904. PubMed ID: 23393066
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.