BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

484 related articles for article (PubMed ID: 19458149)

  • 1. Optimal integration of gravity in trajectory planning of vertical pointing movements.
    Crevecoeur F; Thonnard JL; Lefèvre P
    J Neurophysiol; 2009 Aug; 102(2):786-96. PubMed ID: 19458149
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinematic and dynamic processes for the control of pointing movements in humans revealed by short-term exposure to microgravity.
    Papaxanthis C; Pozzo T; McIntyre J
    Neuroscience; 2005; 135(2):371-83. PubMed ID: 16125854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Motor planning of arm movements is direction-dependent in the gravity field.
    Gentili R; Cahouet V; Papaxanthis C
    Neuroscience; 2007 Mar; 145(1):20-32. PubMed ID: 17224242
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensorimotor adaptation of point-to-point arm movements after spaceflight: the role of internal representation of gravity force in trajectory planning.
    Gaveau J; Paizis C; Berret B; Pozzo T; Papaxanthis C
    J Neurophysiol; 2011 Aug; 106(2):620-9. PubMed ID: 21562193
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Search of gravity force in the planning of arm pointing movements].
    Papaxanthis C; Pozzo T
    C R Seances Soc Biol Fil; 1996; 190(5-6):613-9. PubMed ID: 9074726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gravity-dependent estimates of object mass underlie the generation of motor commands for horizontal limb movements.
    Crevecoeur F; McIntyre J; Thonnard JL; Lefèvre P
    J Neurophysiol; 2014 Jul; 112(2):384-92. PubMed ID: 24790173
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of gravity-like torque on goal-directed arm movements in microgravity.
    Bringoux L; Blouin J; Coyle T; Ruget H; Mouchnino L
    J Neurophysiol; 2012 May; 107(9):2541-8. PubMed ID: 22298835
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multimodal reference frame for the planning of vertical arms movements.
    Le Seac'h AB; McIntyre J
    Neurosci Lett; 2007 Aug; 423(3):211-5. PubMed ID: 17709199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accuracy of aimed arm movements in changed gravity.
    Bock O; Howard IP; Money KE; Arnold KE
    Aviat Space Environ Med; 1992 Nov; 63(11):994-8. PubMed ID: 1445164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visual gravity influences arm movement planning.
    Sciutti A; Demougeot L; Berret B; Toma S; Sandini G; Papaxanthis C; Pozzo T
    J Neurophysiol; 2012 Jun; 107(12):3433-45. PubMed ID: 22442569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensorimotor mapping for anticipatory grip force modulation.
    Crevecoeur F; Thonnard JL; Lefèvre P
    J Neurophysiol; 2010 Sep; 104(3):1401-8. PubMed ID: 20573975
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance of a simple aiming task in hypergravity: II. detailed response characteristics.
    Bock O; Arnold KE; Cheung BS
    Aviat Space Environ Med; 1996 Feb; 67(2):133-8. PubMed ID: 8834938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational motor control: redundancy and invariance.
    Guigon E; Baraduc P; Desmurget M
    J Neurophysiol; 2007 Jan; 97(1):331-47. PubMed ID: 17005621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mentally represented motor actions in normal aging II. The influence of the gravito-inertial context on the duration of overt and covert arm movements.
    Personnier P; Paizis C; Ballay Y; Papaxanthis C
    Behav Brain Res; 2008 Jan; 186(2):273-83. PubMed ID: 17913253
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coding of movement- and force-related information in primate primary motor cortex: a computational approach.
    Guigon E; Baraduc P; Desmurget M
    Eur J Neurosci; 2007 Jul; 26(1):250-60. PubMed ID: 17573920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Local Gravity Compensation on Motor Control During Altered Environmental Gravity.
    Kunavar T; Jamšek M; Barbiero M; Blohm G; Nozaki D; Papaxanthis C; White O; Babič J
    Front Neural Circuits; 2021; 15():750267. PubMed ID: 34744639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Different predictions by the minimum variance and minimum torque-change models on the skewness of movement velocity profiles.
    Tanaka H; Tai M; Qian N
    Neural Comput; 2004 Oct; 16(10):2021-40. PubMed ID: 15333205
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pointing arm movements in short- and long-term spaceflights.
    Berger M; Mescheriakov S; Molokanova E; Lechner-Steinleitner S; Seguer N; Kozlovskaya I
    Aviat Space Environ Med; 1997 Sep; 68(9):781-7. PubMed ID: 9293345
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy-related optimal control accounts for gravitational load: comparing shoulder, elbow, and wrist rotations.
    Gaveau J; Berret B; Demougeot L; Fadiga L; Pozzo T; Papaxanthis C
    J Neurophysiol; 2014 Jan; 111(1):4-16. PubMed ID: 24133223
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The temporal structure of vertical arm movements.
    Gaveau J; Papaxanthis C
    PLoS One; 2011; 6(7):e22045. PubMed ID: 21765935
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.