BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

556 related articles for article (PubMed ID: 19458227)

  • 1. Mobilization of calcium from intracellular stores facilitates somatodendritic dopamine release.
    Patel JC; Witkovsky P; Avshalumov MV; Rice ME
    J Neurosci; 2009 May; 29(20):6568-79. PubMed ID: 19458227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Limited regulation of somatodendritic dopamine release by voltage-sensitive Ca channels contrasted with strong regulation of axonal dopamine release.
    Chen BT; Moran KA; Avshalumov MV; Rice ME
    J Neurochem; 2006 Feb; 96(3):645-55. PubMed ID: 16405515
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel Ca2+ dependence and time course of somatodendritic dopamine release: substantia nigra versus striatum.
    Chen BT; Rice ME
    J Neurosci; 2001 Oct; 21(19):7841-7. PubMed ID: 11567075
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The contribution of intracellular calcium stores to mEPSCs recorded in layer II neurones of rat barrel cortex.
    Simkus CR; Stricker C
    J Physiol; 2002 Dec; 545(2):521-35. PubMed ID: 12456831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Disruption of endoplasmic reticulum calcium stores is involved in neuronal death induced by glycolysis inhibition in cultured hippocampal neurons.
    Hernández-Fonseca K; Massieu L
    J Neurosci Res; 2005 Oct; 82(2):196-205. PubMed ID: 16175570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcium from internal stores triggers GABA release from retinal amacrine cells.
    Warrier A; Borges S; Dalcino D; Walters C; Wilson M
    J Neurophysiol; 2005 Dec; 94(6):4196-208. PubMed ID: 16293593
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Action potential and calcium dependence of tonic somatodendritic dopamine release in the Substantia Nigra pars compacta.
    Yee AG; Forbes B; Cheung PY; Martini A; Burrell MH; Freestone PS; Lipski J
    J Neurochem; 2019 Feb; 148(4):462-479. PubMed ID: 30203851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synaptic regulation of somatodendritic dopamine release by glutamate and GABA differs between substantia nigra and ventral tegmental area.
    Chen BT; Rice ME
    J Neurochem; 2002 Apr; 81(1):158-69. PubMed ID: 12067228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bile acids induce Ca2+ release from both the endoplasmic reticulum and acidic intracellular calcium stores through activation of inositol trisphosphate receptors and ryanodine receptors.
    Gerasimenko JV; Flowerdew SE; Voronina SG; Sukhomlin TK; Tepikin AV; Petersen OH; Gerasimenko OV
    J Biol Chem; 2006 Dec; 281(52):40154-63. PubMed ID: 17074764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inositol 1,4,5-trisphosphate (IP3)-mediated Ca2+ release evoked by metabotropic agonists and backpropagating action potentials in hippocampal CA1 pyramidal neurons.
    Nakamura T; Nakamura K; Lasser-Ross N; Barbara JG; Sandler VM; Ross WN
    J Neurosci; 2000 Nov; 20(22):8365-76. PubMed ID: 11069943
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characteristics of electrically evoked somatodendritic dopamine release in substantia nigra and ventral tegmental area in vitro.
    Rice ME; Cragg SJ; Greenfield SA
    J Neurophysiol; 1997 Feb; 77(2):853-62. PubMed ID: 9065854
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inositol 1,4,5-triphosphate-evoked responses in midbrain dopamine neurons.
    Morikawa H; Imani F; Khodakhah K; Williams JT
    J Neurosci; 2000 Oct; 20(20):RC103. PubMed ID: 11027254
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ca2+ responses of pulmonary arterial myocytes to acute hypoxia require release from ryanodine and inositol trisphosphate receptors in sarcoplasmic reticulum.
    Wang J; Shimoda LA; Sylvester JT
    Am J Physiol Lung Cell Mol Physiol; 2012 Jul; 303(2):L161-8. PubMed ID: 22582116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuronal endoplasmic reticulum acts as a single functional Ca2+ store shared by ryanodine and inositol-1,4,5-trisphosphate receptors as revealed by intra-ER [Ca2+] recordings in single rat sensory neurones.
    Solovyova N; Verkhratsky A
    Pflugers Arch; 2003 Jul; 446(4):447-54. PubMed ID: 12764616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic imaging of endoplasmic reticulum Ca2+ concentration in insulin-secreting MIN6 Cells using recombinant targeted cameleons: roles of sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA)-2 and ryanodine receptors.
    Varadi A; Rutter GA
    Diabetes; 2002 Feb; 51 Suppl 1():S190-201. PubMed ID: 11815480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium store-mediated signaling in sustentacular cells of the mouse olfactory epithelium.
    Hegg CC; Irwin M; Lucero MT
    Glia; 2009 Apr; 57(6):634-44. PubMed ID: 18942758
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intracellular calcium release resulting from mGluR1 receptor activation modulates GABAA currents in wide-field retinal amacrine cells: a study with caffeine.
    Vigh J; Lasater EM
    Eur J Neurosci; 2003 Jun; 17(11):2237-48. PubMed ID: 12814357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functionally separate intracellular Ca2+ stores in smooth muscle.
    Flynn ER; Bradley KN; Muir TC; McCarron JG
    J Biol Chem; 2001 Sep; 276(39):36411-8. PubMed ID: 11477079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Priming of long-term potentiation mediated by ryanodine receptor activation in rat hippocampal slices.
    Mellentin C; Jahnsen H; Abraham WC
    Neuropharmacology; 2007 Jan; 52(1):118-25. PubMed ID: 16905161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developmental aspects of cardiac Ca(2+) signaling: interplay between RyR- and IP(3)R-gated Ca(2+) stores.
    Janowski E; Berríos M; Cleemann L; Morad M
    Am J Physiol Heart Circ Physiol; 2010 Jun; 298(6):H1939-50. PubMed ID: 20304819
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.