BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

748 related articles for article (PubMed ID: 19458288)

  • 21. Effects of Corticision on paradental remodeling in orthodontic tooth movement.
    Kim SJ; Park YG; Kang SG
    Angle Orthod; 2009 Mar; 79(2):284-91. PubMed ID: 19216591
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tissue responses resulting from tooth movement surgically assisted by corticotomy and corticision in rats.
    Peron AP; Johann AC; Papalexiou V; Tanaka OM; Guariza-Filho O; Ignácio SA; Camargo ES
    Angle Orthod; 2017 Jan; 87(1):118-124. PubMed ID: 27281474
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluation of BSP expression and apoptosis in the periodontal ligament during orthodontic relapse: a preliminary study.
    McManus A; Utreja A; Chen J; Kalajzic Z; Yang W; Nanda R; Wadhwa S; Uribe F
    Orthod Craniofac Res; 2014 Nov; 17(4):239-48. PubMed ID: 24924469
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bone remodeling during orthodontic tooth movement in rats with type 2 diabetes.
    Plut A; Sprogar Š; Drevenšek G; Hudoklin S; Zupan J; Marc J; Drevenšek M
    Am J Orthod Dentofacial Orthop; 2015 Dec; 148(6):1017-25. PubMed ID: 26672708
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Orthodontic mechanotransduction and the role of the P2X7 receptor.
    Viecilli RF; Katona TR; Chen J; Hartsfield JK; Roberts WE
    Am J Orthod Dentofacial Orthop; 2009 Jun; 135(6):694.e1-16; discussion 694-5. PubMed ID: 19524819
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Timing of force application affects the rate of tooth movement into surgical alveolar defects with grafts in beagles.
    Ahn HW; Ohe JY; Lee SH; Park YG; Kim SJ
    Am J Orthod Dentofacial Orthop; 2014 Apr; 145(4):486-95. PubMed ID: 24703287
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An experimental model to study intrusive forces in rats.
    Labate LM; Guardo CR; Cabrini RL
    Acta Odontol Latinoam; 2001; 14(1-2):18-23. PubMed ID: 15208932
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Maxillary posterior intrusion mechanics with mini-implant anchorage evaluated with the finite element method.
    Çifter M; Saraç M
    Am J Orthod Dentofacial Orthop; 2011 Nov; 140(5):e233-41. PubMed ID: 22051501
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Expression of bone markers and micro-CT analysis of alveolar bone during orthodontic relapse.
    Franzen TJ; Monjo M; Rubert M; Vandevska-Radunovic V
    Orthod Craniofac Res; 2014 Nov; 17(4):249-58. PubMed ID: 24931826
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A rat model for orthodontic translational expansive tooth movement.
    Danz JC; Dalstra M; Bosshardt DD; Katsaros C; Stavropoulos A
    Orthod Craniofac Res; 2013 Nov; 16(4):223-33. PubMed ID: 23796274
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tooth movement and changes in periodontal tissue in response to orthodontic force in rats vary depending on the time of day the force is applied.
    Miyoshi K; Igarashi K; Saeki S; Shinoda H; Mitani H
    Eur J Orthod; 2001 Aug; 23(4):329-38. PubMed ID: 11544782
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Orthodontic movement through compact bone and spongious bone. The difference in tissue reaction with 2 different forces].
    Markostamos K
    Orthod Fr; 1991; 62 Pt 3():875-91. PubMed ID: 1726828
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Preapplication of orthodontic forces to the donor teeth affects periodontal healing of transplanted teeth.
    Suzaki Y; Matsumoto Y; Kanno Z; Soma K
    Angle Orthod; 2008 May; 78(3):495-501. PubMed ID: 18416609
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Serum and alveolar bone phosphatase changes reflect bone turnover during orthodontic tooth movement.
    Keeling SD; King GJ; McCoy EA; Valdez M
    Am J Orthod Dentofacial Orthop; 1993 Apr; 103(4):320-6. PubMed ID: 8480697
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Finite Element Analysis of Bone Stress for Miniscrew Implant Proximal to Root Under Occlusal Force and Implant Loading.
    Shan LH; Guo N; Zhou GJ; Qie H; Li CX; Lu L
    J Craniofac Surg; 2015 Oct; 26(7):2072-6. PubMed ID: 26207429
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biomechanical effects of corticotomy approaches on dentoalveolar structures during canine retraction: A 3-dimensional finite element analysis.
    Yang C; Wang C; Deng F; Fan Y
    Am J Orthod Dentofacial Orthop; 2015 Sep; 148(3):457-65. PubMed ID: 26321344
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Repair of root resorption 2 to 16 weeks after the application of continuous forces on maxillary first molars in rats: a 2- and 3-dimensional quantitative evaluation.
    Gonzales C; Hotokezaka H; Darendeliler MA; Yoshida N
    Am J Orthod Dentofacial Orthop; 2010 Apr; 137(4):477-85. PubMed ID: 20362906
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Compensatory bone formation in young and old rats during tooth movement.
    Shimpo S; Horiguchi Y; Nakamura Y; Lee M; Oikawa T; Noda K; Kuwahara Y; Kawasaki K
    Eur J Orthod; 2003 Feb; 25(1):1-7. PubMed ID: 12608717
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Finite element analysis of the effect of force directions on tooth movement in extraction space closure with miniscrew sliding mechanics.
    Kojima Y; Kawamura J; Fukui H
    Am J Orthod Dentofacial Orthop; 2012 Oct; 142(4):501-8. PubMed ID: 22999674
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Force magnitude and duration effects on amount of tooth movement and root resorption in the rat molar.
    Gonzales C; Hotokezaka H; Yoshimatsu M; Yozgatian JH; Darendeliler MA; Yoshida N
    Angle Orthod; 2008 May; 78(3):502-9. PubMed ID: 18416627
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 38.