These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 19458397)

  • 1. Detection, eye-hand coordination and virtual mobility performance in simulated vision for a cortical visual prosthesis device.
    Srivastava NR; Troyk PR; Dagnelie G
    J Neural Eng; 2009 Jun; 6(3):035008. PubMed ID: 19458397
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rehabilitation regimes based upon psychophysical studies of prosthetic vision.
    Chen SC; Suaning GJ; Morley JW; Lovell NH
    J Neural Eng; 2009 Jun; 6(3):035009. PubMed ID: 19458400
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved visual performance in letter perception through edge orientation encoding in a retinal prosthesis simulation.
    Kiral-Kornek FI; OʼSullivan-Greene E; Savage CO; McCarthy C; Grayden DB; Burkitt AN
    J Neural Eng; 2014 Dec; 11(6):066002. PubMed ID: 25307496
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensory augmentation to aid training with retinal prostheses.
    Kvansakul J; Hamilton L; Ayton LN; McCarthy C; Petoe MA
    J Neural Eng; 2020 Jul; 17(4):045001. PubMed ID: 32554868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Virtual wayfinding using simulated prosthetic vision in gaze-locked viewing.
    Wang L; Yang L; Dagnelie G
    Optom Vis Sci; 2008 Nov; 85(11):E1057-63. PubMed ID: 18981914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulation of a phosphene-based visual field: visual acuity in a pixelized vision system.
    Cha K; Horch K; Normann RA
    Ann Biomed Eng; 1992; 20(4):439-49. PubMed ID: 1510295
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study of tactile perception based on phosphene positioning using simulated prosthetic vision.
    Chai X; Zhang L; Li W; Shao F; Yang K; Ren Q
    Artif Organs; 2008 Feb; 32(2):110-5. PubMed ID: 18269352
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PVGAN: a generative adversarial network for object simplification in prosthetic vision.
    Elnabawy RH; Abdennadher S; Hellwich O; Eldawlatly S
    J Neural Eng; 2022 Sep; 19(5):. PubMed ID: 35981530
    [No Abstract]   [Full Text] [Related]  

  • 9. A novel simulation paradigm utilising MRI-derived phosphene maps for cortical prosthetic vision.
    Wang HZ; Wong YT
    J Neural Eng; 2023 Aug; 20(4):. PubMed ID: 37531948
    [No Abstract]   [Full Text] [Related]  

  • 10. Adaptation to Phosphene Parameters Based on Multi-Object Recognition Using Simulated Prosthetic Vision.
    Xia P; Hu J; Peng Y
    Artif Organs; 2015 Dec; 39(12):1038-45. PubMed ID: 25912967
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-electrode stimulation evokes consistent spatial patterns of phosphenes and improves phosphene mapping in blind subjects.
    Oswalt D; Bosking W; Sun P; Sheth SA; Niketeghad S; Salas MA; Patel U; Greenberg R; Dorn J; Pouratian N; Beauchamp M; Yoshor D
    Brain Stimul; 2021; 14(5):1356-1372. PubMed ID: 34482000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ten-Year Follow-up of a Blind Patient Chronically Implanted with Epiretinal Prosthesis Argus I.
    Yue L; Falabella P; Christopher P; Wuyyuru V; Dorn J; Schor P; Greenberg RJ; Weiland JD; Humayun MS
    Ophthalmology; 2015 Dec; 122(12):2545-52.e1. PubMed ID: 26386850
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feasibility of a visual prosthesis for the blind based on intracortical microstimulation of the visual cortex.
    Schmidt EM; Bak MJ; Hambrecht FT; Kufta CV; O'Rourke DK; Vallabhanath P
    Brain; 1996 Apr; 119 ( Pt 2)():507-22. PubMed ID: 8800945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Saturation in Phosphene Size with Increasing Current Levels Delivered to Human Visual Cortex.
    Bosking WH; Sun P; Ozker M; Pei X; Foster BL; Beauchamp MS; Yoshor D
    J Neurosci; 2017 Jul; 37(30):7188-7197. PubMed ID: 28652411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-term Repeatability and Reproducibility of Phosphene Characteristics in Chronically Implanted Argus II Retinal Prosthesis Subjects.
    Luo YH; Zhong JJ; Clemo M; da Cruz L
    Am J Ophthalmol; 2016 Oct; 170():100-109. PubMed ID: 27491695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of simulated phosphene size based on tactile perception.
    Lu Y; Chen P; Zhao Y; Shi J; Ren Q; Chai X
    Artif Organs; 2012 Jan; 36(1):115-20. PubMed ID: 21810114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimating Phosphene Locations Using Eye Movements of Suprachoroidal Retinal Prosthesis Users.
    Titchener SA; Goossens J; Kvansakul J; Nayagam DAX; Kolic M; Baglin EK; Ayton LN; Abbott CJ; Luu CD; Barnes N; Kentler WG; Shivdasani MN; Allen PJ; Petoe MA
    Transl Vis Sci Technol; 2023 Mar; 12(3):20. PubMed ID: 36943168
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microstimulation of visual cortex to restore vision.
    Tehovnik EJ; Slocum WM; Smirnakis SM; Tolias AS
    Prog Brain Res; 2009; 175():347-75. PubMed ID: 19660667
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gaze Compensation as a Technique for Improving Hand-Eye Coordination in Prosthetic Vision.
    Titchener SA; Shivdasani MN; Fallon JB; Petoe MA
    Transl Vis Sci Technol; 2018 Jan; 7(1):2. PubMed ID: 29321945
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visual acuity of simulated thalamic visual prostheses in normally sighted humans.
    Bourkiza B; Vurro M; Jeffries A; Pezaris JS
    PLoS One; 2013; 8(9):e73592. PubMed ID: 24086286
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.