These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 1945840)
1. Effect of 5-methylcytosine on the stability of triple-stranded DNA--a thermodynamic study. Xodo LE; Manzini G; Quadrifoglio F; van der Marel GA; van Boom JH Nucleic Acids Res; 1991 Oct; 19(20):5625-31. PubMed ID: 1945840 [TBL] [Abstract][Full Text] [Related]
2. Pyrimidine phosphorothioate oligonucleotides form triple-stranded helices and promote transcription inhibition. Xodo L; Alunni-Fabbroni M; Manzini G; Quadrifoglio F Nucleic Acids Res; 1994 Aug; 22(16):3322-30. PubMed ID: 8078767 [TBL] [Abstract][Full Text] [Related]
3. Effect of 5-methylcytosine on the structure and stability of DNA. Formation of triple-stranded concatenamers by overlapping oligonucleotides. Xodo LE; Alunni-Fabbroni M; Manzini G J Biomol Struct Dyn; 1994 Feb; 11(4):703-20. PubMed ID: 8204209 [TBL] [Abstract][Full Text] [Related]
4. Effect of selective cytosine methylation and hydration on the conformations of DNA triple helices containing a TTTT loop structure by FT-IR spectroscopy. Fang Y; Bai C; Wei Y; Lin SB; Kan L J Biomol Struct Dyn; 1995 Dec; 13(3):471-82. PubMed ID: 8825727 [TBL] [Abstract][Full Text] [Related]
5. pH and cation effects on the properties of parallel pyrimidine motif DNA triplexes. Sugimoto N; Wu P; Hara H; Kawamoto Y Biochemistry; 2001 Aug; 40(31):9396-405. PubMed ID: 11478909 [TBL] [Abstract][Full Text] [Related]
7. Influence of sequence-dependent cytosine protonation and methylation on DNA triplex stability. Leitner D; Schröder W; Weisz K Biochemistry; 2000 May; 39(19):5886-92. PubMed ID: 10801340 [TBL] [Abstract][Full Text] [Related]
8. Thermodynamic characterization of the stability and the melting behavior of a DNA triplex: a spectroscopic and calorimetric study. Plum GE; Park YW; Singleton SF; Dervan PB; Breslauer KJ Proc Natl Acad Sci U S A; 1990 Dec; 87(23):9436-40. PubMed ID: 2251285 [TBL] [Abstract][Full Text] [Related]
9. "Paper-clip" type triple helix formation by 5'-d-(TC)3Ta(CT)3Cb(AG)3 (a and b = 0-4) as a function of loop size with and without the pseudoisocytosine base in the Hoogsteen strand. Chin TM; Lin SB; Lee SY; Chang ML; Cheng AY; Chang FC; Pasternack L; Huang DH; Kan LS Biochemistry; 2000 Oct; 39(40):12457-64. PubMed ID: 11015227 [TBL] [Abstract][Full Text] [Related]
10. Spectroscopic and calorimetric investigation on the DNA triplex formed by d(CTCTTCTTTCTTTTCTTTCTTCTC) and d(GAGAAGAAAGA) at acidic pH. Xodo LE; Manzini G; Quadrifoglio F Nucleic Acids Res; 1990 Jun; 18(12):3557-64. PubMed ID: 2362808 [TBL] [Abstract][Full Text] [Related]
11. Linkage of proton binding to the thermal dissociation of triple helix complex. Petraccone L; Erra E; Mattia CA; Fedullo V; Barone G; Giancola C Biophys Chem; 2004 Jul; 110(1-2):73-81. PubMed ID: 15223145 [TBL] [Abstract][Full Text] [Related]
12. Prediction of the stability of DNA triplexes. Roberts RW; Crothers DM Proc Natl Acad Sci U S A; 1996 Apr; 93(9):4320-5. PubMed ID: 8633063 [TBL] [Abstract][Full Text] [Related]
13. 7,8-Dihydro-8-oxoadenine as a replacement for cytosine in the third strand of triple helices. Triplex formation without hypochromicity. Jetter MC; Hobbs FW Biochemistry; 1993 Apr; 32(13):3249-54. PubMed ID: 8461291 [TBL] [Abstract][Full Text] [Related]
14. Thermodynamic properties of a conformationally constrained intramolecular DNA triple helix. Völker J; Osborne SE; Glick GD; Breslauer KJ Biochemistry; 1997 Jan; 36(4):756-67. PubMed ID: 9020773 [TBL] [Abstract][Full Text] [Related]
15. Thermodynamic characterization of a triple-helical three-way junction containing a Hoogsteen branch point. Hüsler PL; Klump HH Arch Biochem Biophys; 1995 Sep; 322(1):149-66. PubMed ID: 7574670 [TBL] [Abstract][Full Text] [Related]
16. Energetics of strand-displacement reactions in triple helices: a spectroscopic study. Mills M; Arimondo PB; Lacroix L; Garestier T; Hélène C; Klump H; Mergny JL J Mol Biol; 1999 Sep; 291(5):1035-54. PubMed ID: 10518941 [TBL] [Abstract][Full Text] [Related]
17. Calorimetric analysis of triple helices targeted to the d(G3A4G3).d(C3T4C3) duplex. Scaria PV; Shafer RH Biochemistry; 1996 Aug; 35(33):10985-94. PubMed ID: 8718892 [TBL] [Abstract][Full Text] [Related]
18. Triple helix formation by oligopurine-oligopyrimidine DNA fragments. Electrophoretic and thermodynamic behavior. Manzini G; Xodo LE; Gasparotto D; Quadrifoglio F; van der Marel GA; van Boom JH J Mol Biol; 1990 Jun; 213(4):833-43. PubMed ID: 2359124 [TBL] [Abstract][Full Text] [Related]
19. Poly(pyrimidine) . poly(purine) synthetic DNAs containing 5-methylcytosine form stable triplexes at neutral pH. Lee JS; Woodsworth ML; Latimer LJ; Morgan AR Nucleic Acids Res; 1984 Aug; 12(16):6603-14. PubMed ID: 6473110 [TBL] [Abstract][Full Text] [Related]
20. Thermodynamic and kinetic studies of DNA triplex formation of an oligohomopyrimidine and a matched duplex by filter binding assay. Shindo H; Torigoe H; Sarai A Biochemistry; 1993 Aug; 32(34):8963-9. PubMed ID: 8364041 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]