These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

342 related articles for article (PubMed ID: 19458411)

  • 21. Transient shear stresses on a suspension cell in turbulence.
    Cherry RS; Kwon KY
    Biotechnol Bioeng; 1990 Sep; 36(6):563-71. PubMed ID: 18595114
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of erythrocyte membrane tension for hemolysis prediction in complex flows.
    M Faghih M; Sharp MK
    Biomech Model Mechanobiol; 2018 Jun; 17(3):827-842. PubMed ID: 29299699
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Numerical simulation of blood flow through microvascular capillary networks.
    Pozrikidis C
    Bull Math Biol; 2009 Aug; 71(6):1520-41. PubMed ID: 19267162
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electrochemical analysis of blood cell/substrate interactions under flow conditions.
    Godin C; Violleau M; Caprani A
    Biorheology; 1995; 32(5):571-87. PubMed ID: 8541525
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Analysis of flow disturbance in a stenosed carotid artery bifurcation using two-equation transitional and turbulence models.
    Tan FP; Soloperto G; Bashford S; Wood NB; Thom S; Hughes A; Xu XY
    J Biomech Eng; 2008 Dec; 130(6):061008. PubMed ID: 19045537
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hemolysis estimation in turbulent flow for the FDA critical path initiative centrifugal blood pump.
    Avci M; Heck M; O'Rear EA; Papavassiliou DV
    Biomech Model Mechanobiol; 2021 Oct; 20(5):1709-1722. PubMed ID: 34106362
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Performance of time-frequency representation techniques to measure blood flow turbulence with pulsed-wave Doppler ultrasound.
    Cloutier G; Chen D; Durand LG
    Ultrasound Med Biol; 2001 Apr; 27(4):535-50. PubMed ID: 11368865
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An in vitro investigation of the influence of stenosis severity on the flow in the ascending aorta.
    Gülan U; Lüthi B; Holzner M; Liberzon A; Tsinober A; Kinzelbach W
    Med Eng Phys; 2014 Sep; 36(9):1147-55. PubMed ID: 25066583
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Large-Eddy Simulations of Flow in the FDA Benchmark Nozzle Geometry to Predict Hemolysis.
    Tobin N; Manning KB
    Cardiovasc Eng Technol; 2020 Jun; 11(3):254-267. PubMed ID: 32297154
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A strain-based flow-induced hemolysis prediction model calibrated by in vitro erythrocyte deformation measurements.
    Chen Y; Sharp MK
    Artif Organs; 2011 Feb; 35(2):145-56. PubMed ID: 21091515
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A viscoelastic model of shear-induced hemolysis in laminar flow.
    Arwatz G; Smits AJ
    Biorheology; 2013; 50(1-2):45-55. PubMed ID: 23619152
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Red cell membrane damage.
    Kuypers FA
    J Heart Valve Dis; 1998 Jul; 7(4):387-95. PubMed ID: 9697059
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Human red blood cell hemolysis in a turbulent shear flow: contribution of Reynolds shear stresses.
    Sallam AM; Hwang NH
    Biorheology; 1984; 21(6):783-97. PubMed ID: 6240286
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spatio-temporal flow analysis in bileaflet heart valve hinge regions: potential analysis for blood element damage.
    Simon HA; Dasi LP; Leo HL; Yoganathan AP
    Ann Biomed Eng; 2007 Aug; 35(8):1333-46. PubMed ID: 17431789
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multiple equilibrium states in a micro-vascular network.
    Gardner D; Li Y; Small B; Geddes JB; Carr RT
    Math Biosci; 2010 Oct; 227(2):117-24. PubMed ID: 20627109
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The deformation behavior of multiple red blood cells in a capillary vessel.
    Gong X; Sugiyama K; Takagi S; Matsumoto Y
    J Biomech Eng; 2009 Jul; 131(7):074504. PubMed ID: 19640140
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Kinetic theory based model for blood flow and its viscosity.
    Gidaspow D; Huang J
    Ann Biomed Eng; 2009 Aug; 37(8):1534-45. PubMed ID: 19479375
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A mathematical model for the dissolution of non-occlusive blood clots in fast tangential blood flow.
    Sersa I; Tratar G; Mikac U; Blinc A
    Biorheology; 2007; 44(1):1-16. PubMed ID: 17502685
    [TBL] [Abstract][Full Text] [Related]  

  • 39. On the flow dependency of the electrical conductivity of blood.
    Hoetink AE; Faes TJ; Visser KR; Heethaar RM
    IEEE Trans Biomed Eng; 2004 Jul; 51(7):1251-61. PubMed ID: 15248541
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Turbulent flow of red cells in dilute suspensions. Effect on kinetics of O2 uptake.
    Gad-El-Hak M; Morton JB; Kutchal H
    Biophys J; 1977 Jun; 18(3):289-300. PubMed ID: 890028
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.