These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
328 related articles for article (PubMed ID: 19458444)
1. Arrays of carbon nanofibers as a platform for biosensing at the molecular level and for tissue engineering and implantation. Koehne JE; Chen H; Cassell A; Liu GY; Li J; Meyyappan M Biomed Mater Eng; 2009; 19(1):35-43. PubMed ID: 19458444 [TBL] [Abstract][Full Text] [Related]
2. Carbon nanofiber-based composites for the construction of mediator-free biosensors. Lu X; Zhou J; Lu W; Liu Q; Li J Biosens Bioelectron; 2008 Mar; 23(8):1236-43. PubMed ID: 18083363 [TBL] [Abstract][Full Text] [Related]
3. Wafer-scale fabrication of patterned carbon nanofiber nanoelectrode arrays: a route for development of multiplexed, ultrasensitive disposable biosensors. Arumugam PU; Chen H; Siddiqui S; Weinrich JA; Jejelowo A; Li J; Meyyappan M Biosens Bioelectron; 2009 May; 24(9):2818-24. PubMed ID: 19303281 [TBL] [Abstract][Full Text] [Related]
4. An ionic liquid supported CeO2 nanoshuttles-carbon nanotubes composite as a platform for impedance DNA hybridization sensing. Zhang W; Yang T; Zhuang X; Guo Z; Jiao K Biosens Bioelectron; 2009 Apr; 24(8):2417-22. PubMed ID: 19167208 [TBL] [Abstract][Full Text] [Related]
5. Simultaneous electrochemical determination of dopamine, uric acid and ascorbic acid using palladium nanoparticle-loaded carbon nanofibers modified electrode. Huang J; Liu Y; Hou H; You T Biosens Bioelectron; 2008 Dec; 24(4):632-7. PubMed ID: 18640024 [TBL] [Abstract][Full Text] [Related]
6. Synergistically improved sensitivity for the detection of specific DNA sequences using polyaniline nanofibers and multi-walled carbon nanotubes composites. Yang T; Zhou N; Zhang Y; Zhang W; Jiao K; Li G Biosens Bioelectron; 2009 Mar; 24(7):2165-70. PubMed ID: 19131238 [TBL] [Abstract][Full Text] [Related]
7. Ultra-sensitive and wide-dynamic-range sensors based on dense arrays of carbon nanotube tips. Sun G; Huang Y; Zheng L; Zhan Z; Zhang Y; Pang JH; Wu T; Chen P Nanoscale; 2011 Nov; 3(11):4854-8. PubMed ID: 21997308 [TBL] [Abstract][Full Text] [Related]
8. Polyaniline-coated Fe3O4 nanoparticle-carbon-nanotube composite and its application in electrochemical biosensing. Liu Z; Wang J; Xie D; Chen G Small; 2008 Apr; 4(4):462-6. PubMed ID: 18383578 [No Abstract] [Full Text] [Related]
9. DNA biosensors based on self-assembled carbon nanotubes. Wang SG; Wang R; Sellin PJ; Zhang Q Biochem Biophys Res Commun; 2004 Dec; 325(4):1433-7. PubMed ID: 15555587 [TBL] [Abstract][Full Text] [Related]
10. Carbon-nanotube-modified electrodes for amplified enzyme-based electrical detection of DNA hybridization. Wang J; Kawde AN; Jan MR Biosens Bioelectron; 2004 Nov; 20(5):995-1000. PubMed ID: 15530796 [TBL] [Abstract][Full Text] [Related]
11. Rapid detection of ssDNA and RNA using multi-walled carbon nanotubes modified screen-printed carbon electrode. Ye Y; Ju H Biosens Bioelectron; 2005 Nov; 21(5):735-41. PubMed ID: 16242612 [TBL] [Abstract][Full Text] [Related]
12. Ligase-based multiple DNA analysis by using an electrochemical sensor array. Wan Y; Zhang J; Liu G; Pan D; Wang L; Song S; Fan C Biosens Bioelectron; 2009 Jan; 24(5):1209-12. PubMed ID: 18701273 [TBL] [Abstract][Full Text] [Related]
13. Ultrasensitive label-free DNA analysis using an electronic chip based on carbon nanotube nanoelectrode arrays. Koehne J; Chen H; Li J; Cassell AM; Ye Q; Ng HT; Han J; Meyyappan M Nanotechnology; 2003 Dec; 14(12):1239-45. PubMed ID: 21444977 [TBL] [Abstract][Full Text] [Related]
14. A comparative study of carbon fiber-based microelectrodes for the measurement of nitric oxide in brain tissue. Santos RM; Lourenço CF; Piedade AP; Andrews R; Pomerleau F; Huettl P; Gerhardt GA; Laranjinha J; Barbosa RM Biosens Bioelectron; 2008 Dec; 24(4):704-9. PubMed ID: 18657966 [TBL] [Abstract][Full Text] [Related]
15. Electrical microarrays for highly sensitive detection of multiplex PCR products from biological agents. Elsholz B; Nitsche A; Achenbach J; Ellerbrok H; Blohm L; Albers J; Pauli G; Hintsche R; Wörl R Biosens Bioelectron; 2009 Feb; 24(6):1737-43. PubMed ID: 18954971 [TBL] [Abstract][Full Text] [Related]
16. Engineered neuronal circuits shaped and interfaced with carbon nanotube microelectrode arrays. Shein M; Greenbaum A; Gabay T; Sorkin R; David-Pur M; Ben-Jacob E; Hanein Y Biomed Microdevices; 2009 Apr; 11(2):495-501. PubMed ID: 19067173 [TBL] [Abstract][Full Text] [Related]
17. Low potential detection of glutamate based on the electrocatalytic oxidation of NADH at thionine/single-walled carbon nanotubes composite modified electrode. Meng L; Wu P; Chen G; Cai C; Sun Y; Yuan Z Biosens Bioelectron; 2009 Feb; 24(6):1751-6. PubMed ID: 18945610 [TBL] [Abstract][Full Text] [Related]
18. Nanoelectrode ensembles as recognition platform for electrochemical immunosensors. Mucelli SP; Zamuner M; Tormen M; Stanta G; Ugo P Biosens Bioelectron; 2008 Jul; 23(12):1900-3. PubMed ID: 18407487 [TBL] [Abstract][Full Text] [Related]
19. System optimization for the development of ultrasensitive electronic biosensors using carbon nanotube nanoelectrode arrays. Koehne JE; Li J; Cassell AM; Chen H; Ye Q; Han J; Meyyappan M Mech Chem Biosyst; 2004 Mar; 1(1):69-80. PubMed ID: 16783947 [TBL] [Abstract][Full Text] [Related]
20. Fabrication of sensitive glutamate biosensor based on vertically aligned CNT nanoelectrode array and investigating the effect of CNTs density on the electrode performance. Gholizadeh A; Shahrokhian S; Iraji zad A; Mohajerzadeh S; Vosoughi M; Darbari S; Koohsorkhi J; Mehran M Anal Chem; 2012 Jul; 84(14):5932-8. PubMed ID: 22742619 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]