These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
26. Methods for the preparation of electrochemical composite biosensors based on gold nanoparticles. González-Cortés A; Yáñez-Sedeño P; Pingarrón JM Methods Mol Biol; 2009; 504():157-66. PubMed ID: 19159097 [TBL] [Abstract][Full Text] [Related]
27. Highly sensitive amperometric biosensors for phenols based on polyaniline-ionic liquid-carbon nanofiber composite. Zhang J; Lei J; Liu Y; Zhao J; Ju H Biosens Bioelectron; 2009 Mar; 24(7):1858-63. PubMed ID: 18976900 [TBL] [Abstract][Full Text] [Related]
28. A glucose biosensor based on direct electrochemistry of glucose oxidase immobilized on nitrogen-doped carbon nanotubes. Deng S; Jian G; Lei J; Hu Z; Ju H Biosens Bioelectron; 2009 Oct; 25(2):373-7. PubMed ID: 19683424 [TBL] [Abstract][Full Text] [Related]
29. DNA detection on ultrahigh-density optical fiber-based nanoarrays. Tam JM; Song L; Walt DR Biosens Bioelectron; 2009 Apr; 24(8):2488-93. PubMed ID: 19195871 [TBL] [Abstract][Full Text] [Related]
30. Easily made single-walled carbon nanotube surface microelectrodes for neuronal applications. Gabriel G; Gómez R; Bongard M; Benito N; Fernández E; Villa R Biosens Bioelectron; 2009 Mar; 24(7):1942-8. PubMed ID: 19056255 [TBL] [Abstract][Full Text] [Related]
31. Biochip functionalization using electrowetting-on-dielectric digital microfluidics for surface plasmon resonance imaging detection of DNA hybridization. Malic L; Veres T; Tabrizian M Biosens Bioelectron; 2009 Mar; 24(7):2218-24. PubMed ID: 19136248 [TBL] [Abstract][Full Text] [Related]
33. Electrochemical quantification of DNA amplicons via the detection of non-hybridised guanine bases on low-density electrode arrays. Henry OY; Acero Sanchez JL; Latta D; O'Sullivan CK Biosens Bioelectron; 2009 Mar; 24(7):2064-70. PubMed ID: 19071011 [TBL] [Abstract][Full Text] [Related]
34. Ultrasensitive electrocatalytic DNA detection at two- and three-dimensional nanoelectrodes. Gasparac R; Taft BJ; Lapierre-Devlin MA; Lazareck AD; Xu JM; Kelley SO J Am Chem Soc; 2004 Oct; 126(39):12270-1. PubMed ID: 15453752 [TBL] [Abstract][Full Text] [Related]
35. Penicillin biosensor based on a capacitive field-effect structure functionalized with a dendrimer/carbon nanotube multilayer. Siqueira JR; Abouzar MH; Poghossian A; Zucolotto V; Oliveira ON; Schöning MJ Biosens Bioelectron; 2009 Oct; 25(2):497-501. PubMed ID: 19651505 [TBL] [Abstract][Full Text] [Related]
36. Direct and rapid electrochemical biosensing of the human interleukin-2 DNA in unpurified polymerase chain reaction (PCR)-amplified real samples. Pournaghi-Azar MH; Alipour E; Zununi S; Froohandeh H; Hejazi MS Biosens Bioelectron; 2008 Dec; 24(4):524-30. PubMed ID: 18617384 [TBL] [Abstract][Full Text] [Related]
37. Au nanoparticles grafted sandwich platform used amplified small molecule electrochemical aptasensor. Du Y; Li B; Wang F; Dong S Biosens Bioelectron; 2009 Mar; 24(7):1979-83. PubMed ID: 19101135 [TBL] [Abstract][Full Text] [Related]
38. Electrochemical immunosensing using micro and nanoparticles. de la Escosura-Muñiz A; Ambrosi A; Alegret S; Merkoçi A Methods Mol Biol; 2009; 504():145-55. PubMed ID: 19159096 [TBL] [Abstract][Full Text] [Related]
39. Instrumentation: carbon nanotubes on the brain. Parpura V Nat Nanotechnol; 2008 Jul; 3(7):384-5. PubMed ID: 18654560 [No Abstract] [Full Text] [Related]