These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

996 related articles for article (PubMed ID: 19458720)

  • 61. Self-Assembly of DNA Nanostructures in Different Cations.
    Rodriguez A; Gandavadi D; Mathivanan J; Song T; Madhanagopal BR; Talbot H; Sheng J; Wang X; Chandrasekaran AR
    Small; 2023 Sep; 19(39):e2300040. PubMed ID: 37264756
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Fractal assembly of micrometre-scale DNA origami arrays with arbitrary patterns.
    Tikhomirov G; Petersen P; Qian L
    Nature; 2017 Dec; 552(7683):67-71. PubMed ID: 29219965
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Self-assembly of genetically encoded DNA-protein hybrid nanoscale shapes.
    Praetorius F; Dietz H
    Science; 2017 Mar; 355(6331):. PubMed ID: 28336611
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Two design strategies for enhancement of multilayer-DNA-origami folding: underwinding for specific intercalator rescue and staple-break positioning.
    Ke Y; Bellot G; Voigt NV; Fradkov E; Shih WM
    Chem Sci; 2012 Aug; 3(8):2587-2597. PubMed ID: 24653832
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Nanoscale rotary apparatus formed from tight-fitting 3D DNA components.
    Ketterer P; Willner EM; Dietz H
    Sci Adv; 2016 Feb; 2(2):e1501209. PubMed ID: 26989778
    [TBL] [Abstract][Full Text] [Related]  

  • 66. DNA tile based self-assembly: building complex nanoarchitectures.
    Lin C; Liu Y; Rinker S; Yan H
    Chemphyschem; 2006 Aug; 7(8):1641-7. PubMed ID: 16832805
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Switching binary states of nanoparticle superlattices and dimer clusters by DNA strands.
    Maye MM; Kumara MT; Nykypanchuk D; Sherman WB; Gang O
    Nat Nanotechnol; 2010 Feb; 5(2):116-20. PubMed ID: 20023646
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Single-stranded templates as railroad tracks for hierarchical assembly of DNA origami.
    Rahbani JF; Hsu JCC; Chidchob P; Sleiman HF
    Nanoscale; 2018 Aug; 10(29):13994-13999. PubMed ID: 29995052
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Site-directed, on-surface assembly of DNA nanostructures.
    Meyer R; SaccĂ  B; Niemeyer CM
    Angew Chem Int Ed Engl; 2015 Oct; 54(41):12039-43. PubMed ID: 26306556
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Programming rigidity into size-defined wireframe DNA nanotubes.
    Saliba D; Luo X; Rizzuto FJ; Sleiman HF
    Nanoscale; 2023 Mar; 15(11):5403-5413. PubMed ID: 36826342
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Helical nanostructures based on DNA self-assembly.
    Liu H; Shen X; Wang ZG; Kuzyk A; Ding B
    Nanoscale; 2014 Aug; 6(16):9331-8. PubMed ID: 24740255
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Overview of DNA origami for molecular self-assembly.
    Saaem I; LaBean TH
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2013; 5(2):150-62. PubMed ID: 23335504
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Dynamic DNA nanotechnology using strand-displacement reactions.
    Zhang DY; Seelig G
    Nat Chem; 2011 Feb; 3(2):103-13. PubMed ID: 21258382
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Assembly and microscopic characterization of DNA origami structures.
    Scheible M; Jungmann R; Simmel FC
    Adv Exp Med Biol; 2012; 733():87-96. PubMed ID: 22101715
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Building Large DNA Bundles via Controlled Hierarchical Assembly of DNA Tubes.
    Zhang Y; Yang D; Wang P; Ke Y
    ACS Nano; 2023 Jun; 17(11):10486-10495. PubMed ID: 37207344
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Recent progress in DNA origami technology.
    Endo M; Sugiyama H
    Curr Protoc Nucleic Acid Chem; 2011 Jun; Chapter 12():Unit12.8. PubMed ID: 21638269
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Stress in DNA Gridiron Facilitates the Formation of Two-Dimensional Crystalline Structures.
    Yu L; Cheng J; Wang D; Pan V; Chang S; Song J; Ke Y
    J Am Chem Soc; 2022 Jun; 144(22):9747-9752. PubMed ID: 35578912
    [TBL] [Abstract][Full Text] [Related]  

  • 78. In vitro assembly of cubic RNA-based scaffolds designed in silico.
    Afonin KA; Bindewald E; Yaghoubian AJ; Voss N; Jacovetty E; Shapiro BA; Jaeger L
    Nat Nanotechnol; 2010 Sep; 5(9):676-82. PubMed ID: 20802494
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Quantifying absolute addressability in DNA origami with molecular resolution.
    Strauss MT; Schueder F; Haas D; Nickels PC; Jungmann R
    Nat Commun; 2018 Apr; 9(1):1600. PubMed ID: 29686288
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Crystallization of Amphiphilic DNA C-Stars.
    Brady RA; Brooks NJ; Cicuta P; Di Michele L
    Nano Lett; 2017 May; 17(5):3276-3281. PubMed ID: 28417635
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 50.