BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

390 related articles for article (PubMed ID: 1945884)

  • 1. ATP dependent histone phosphorylation and nucleosome assembly in a human cell free extract.
    Banerjee S; Bennion GR; Goldberg MW; Allen TD
    Nucleic Acids Res; 1991 Nov; 19(21):5999-6006. PubMed ID: 1945884
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assembly of correctly spaced chromatin in a nuclear extract from Xenopus laevis oocytes.
    Sessa G; Ruberti I
    Nucleic Acids Res; 1990 Sep; 18(18):5449-55. PubMed ID: 2170936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The proto-chromatosome: A fundamental subunit of chromatin?
    Ocampo J; Cui F; Zhurkin VB; Clark DJ
    Nucleus; 2016 Jul; 7(4):382-7. PubMed ID: 27645053
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assembly and properties of chromatin containing histone H1.
    Rodríguez-Campos A; Shimamura A; Worcel A
    J Mol Biol; 1989 Sep; 209(1):135-50. PubMed ID: 2810366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A simple and versatile system for the ATP-dependent assembly of chromatin.
    Khuong MT; Fei J; Cruz-Becerra G; Kadonaga JT
    J Biol Chem; 2017 Nov; 292(47):19478-19490. PubMed ID: 28982979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High mobility group proteins 14 and 17 can space nucleosomal particles deficient in histones H2A and H2B creating a template that is transcriptionally active.
    Tremethick DJ
    J Biol Chem; 1994 Nov; 269(45):28436-42. PubMed ID: 7961785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. p300-mediated acetylation facilitates the transfer of histone H2A-H2B dimers from nucleosomes to a histone chaperone.
    Ito T; Ikehara T; Nakagawa T; Kraus WL; Muramatsu M
    Genes Dev; 2000 Aug; 14(15):1899-907. PubMed ID: 10921904
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ATP-dependent reorganization of human sperm nuclear chromatin.
    Banerjee S; Smallwood A; Hultén M
    J Cell Sci; 1995 Feb; 108 ( Pt 2)():755-65. PubMed ID: 7769017
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A defined in vitro system to study ATP-dependent remodeling of short chromatin fibers.
    Maier VK; Becker PB
    Methods Mol Biol; 2012; 833():255-70. PubMed ID: 22183599
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of the higher-order structure of chromatin by histones H1 and H5.
    Allan J; Cowling GJ; Harborne N; Cattini P; Craigie R; Gould H
    J Cell Biol; 1981 Aug; 90(2):279-88. PubMed ID: 7287811
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel nucleosomal particles containing core histones and linker DNA but no histone H1.
    Cole HA; Cui F; Ocampo J; Burke TL; Nikitina T; Nagarajavel V; Kotomura N; Zhurkin VB; Clark DJ
    Nucleic Acids Res; 2016 Jan; 44(2):573-81. PubMed ID: 26400169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of maize chromatin-associated HMG proteins with mononucleosomes: role of core and linker histones.
    Lichota J; Grasser KD
    Biol Chem; 2003 Jul; 384(7):1019-27. PubMed ID: 12956418
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nucleosome positioning is determined by the (H3-H4)2 tetramer.
    Dong F; van Holde KE
    Proc Natl Acad Sci U S A; 1991 Dec; 88(23):10596-600. PubMed ID: 1961726
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of a rapidly formed nonnucleosomal histone-DNA intermediate that is converted into chromatin by ACF.
    Torigoe SE; Urwin DL; Ishii H; Smith DE; Kadonaga JT
    Mol Cell; 2011 Aug; 43(4):638-48. PubMed ID: 21855802
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro core particle and nucleosome assembly at physiological ionic strength.
    Ruiz-Carrillo A; Jorcano JL; Eder G; Lurz R
    Proc Natl Acad Sci U S A; 1979 Jul; 76(7):3284-8. PubMed ID: 291002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drosophila NAP-1 is a core histone chaperone that functions in ATP-facilitated assembly of regularly spaced nucleosomal arrays.
    Ito T; Bulger M; Kobayashi R; Kadonaga JT
    Mol Cell Biol; 1996 Jun; 16(6):3112-24. PubMed ID: 8649423
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assembly of regularly spaced nucleosome arrays by Drosophila chromatin assembly factor 1 and a 56-kDa histone-binding protein.
    Bulger M; Ito T; Kamakaka RT; Kadonaga JT
    Proc Natl Acad Sci U S A; 1995 Dec; 92(25):11726-30. PubMed ID: 8524837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nucleosome binding by the polymerase I transactivator upstream binding factor displaces linker histone H1.
    Kermekchiev M; Workman JL; Pikaard CS
    Mol Cell Biol; 1997 Oct; 17(10):5833-42. PubMed ID: 9315641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A nucleosome-free region locally abrogates histone H1-dependent restriction of linker DNA accessibility in chromatin.
    Mishra LN; Hayes JJ
    J Biol Chem; 2018 Dec; 293(50):19191-19200. PubMed ID: 30373774
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preferential and asymmetric interaction of linker histones with 5S DNA in the nucleosome.
    Hayes JJ; Wolffe AP
    Proc Natl Acad Sci U S A; 1993 Jul; 90(14):6415-9. PubMed ID: 8341648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.