These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 19458948)

  • 1. Intermittent contact mode AFM investigation of native plasma membrane of Xenopus laevis oocyte.
    Orsini F; Santacroce M; Arosio P; Castagna M; Lenardi C; Poletti G; Sacchi FV
    Eur Biophys J; 2009 Sep; 38(7):903-10. PubMed ID: 19458948
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atomic force microscopy imaging of Xenopus laevis oocyte plasma membrane purified by ultracentrifugation.
    Santacroce M; Orsini F; Mari SA; Marinone M; Lenardi C; Bettè S; Sacchi VF; Poletti G
    Microsc Res Tech; 2008 Jun; 71(6):397-402. PubMed ID: 18172897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Imaging of Xenopus laevis oocyte plasma membrane in physiological-like conditions by atomic force microscopy.
    Santacroce M; Daniele F; Cremona A; Scaccabarozzi D; Castagna M; Orsini F
    Microsc Microanal; 2013 Oct; 19(5):1358-63. PubMed ID: 23745574
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Observing Xenopus laevis oocyte plasma membrane by Atomic Force Microscopy.
    Orsini F; Santacroce M; Arosio P; Sacchi VF
    Methods; 2010 May; 51(1):106-13. PubMed ID: 19995606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomic force microscopy on plasma membranes from Xenopus laevis oocytes containing human aquaporin 4.
    Orsini F; Santacroce M; Cremona A; Gosvami NN; Lascialfari A; Hoogenboom BW
    J Mol Recognit; 2014 Nov; 27(11):669-75. PubMed ID: 25277091
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasma membrane plasticity of Xenopus laevis oocyte imaged with atomic force microscopy.
    Schillers H; Danker T; Schnittler HJ; Lang F; Oberleithner H
    Cell Physiol Biochem; 2000; 10(1-2):99-107. PubMed ID: 10844401
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atomic force microscopy imaging of actin cortical cytoskeleton of Xenopus laevis oocyte.
    Santacroce M; Orsini F; Perego C; Lenardi C; Castagna M; Mari SA; Sacchi VF; Poletti G
    J Microsc; 2006 Jul; 223(Pt 1):57-65. PubMed ID: 16872432
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atomic force microscopy characterization of Xenopus laevis oocyte plasma membrane.
    Orsini F; Santacroce M; Perego C; Lenardi C; Castagna M; Mari SA; Sacchi VF; Poletti G
    Microsc Res Tech; 2006 Oct; 69(10):826-34. PubMed ID: 16886228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasma membrane protein clusters appear in CFTR-expressing Xenopus laevis oocytes after cAMP stimulation.
    Schillers H; Danker T; Madeja M; Oberleithner H
    J Membr Biol; 2001 Apr; 180(3):205-12. PubMed ID: 11337892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lattice-like array particles on Xenopus oocyte plasma membrane.
    Lau JM; You HX; Yu L
    Scanning; 2002; 24(5):224-31. PubMed ID: 12392353
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gold nanoparticles interacting with synthetic lipid rafts: an AFM investigation.
    Ridolfi A; Caselli L; Montis C; Mangiapia G; Berti D; Brucale M; Valle F
    J Microsc; 2020 Dec; 280(3):194-203. PubMed ID: 32432336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dibucaine effects on structural and elastic properties of lipid bilayers.
    Lorite GS; Nobre TM; Zaniquelli ME; de Paula E; Cotta MA
    Biophys Chem; 2009 Feb; 139(2-3):75-83. PubMed ID: 19010585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supported Planar Single and Multiple Bilayer Formation by DOPC Vesicle Rupture on Mica Substrate: A Mechanism as Revealed by Atomic Force Microscopy Study.
    Basu A; Karmakar P; Karmakar S
    J Membr Biol; 2020 Jun; 253(3):205-219. PubMed ID: 32279087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SNAREs in opposing bilayers interact in a circular array to form conducting pores.
    Cho SJ; Kelly M; Rognlien KT; Cho JA; Hörber JK; Jena BP
    Biophys J; 2002 Nov; 83(5):2522-7. PubMed ID: 12414686
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Following the formation of supported lipid bilayers on mica: a study combining AFM, QCM-D, and ellipsometry.
    Richter RP; Brisson AR
    Biophys J; 2005 May; 88(5):3422-33. PubMed ID: 15731391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Imaging excised apical plasma membrane patches of MDCK cells in physiological conditions with atomic force microscopy.
    Lärmer J; Schneider SW; Danker T; Schwab A; Oberleithner H
    Pflugers Arch; 1997 Jul; 434(3):254-60. PubMed ID: 9178623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chitosan-induced restructuration of a mica-supported phospholipid bilayer: an atomic force microscopy study.
    Fang N; Chan V
    Biomacromolecules; 2003; 4(6):1596-604. PubMed ID: 14606885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atomic Force Microscopy Imaging and Force Spectroscopy of Supported Lipid Bilayers.
    Unsay JD; Cosentino K; García-Sáez AJ
    J Vis Exp; 2015 Jul; (101):e52867. PubMed ID: 26273958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Force measurements on myelin basic protein adsorbed to mica and lipid bilayer surfaces done with the atomic force microscope.
    Mueller H; Butt HJ; Bamberg E
    Biophys J; 1999 Feb; 76(2):1072-9. PubMed ID: 9916039
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Supported lipid bilayers on mica and silicon oxide: comparison of the main phase transition behavior.
    Seeger HM; Di Cerbo A; Alessandrini A; Facci P
    J Phys Chem B; 2010 Jul; 114(27):8926-33. PubMed ID: 20572638
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.