These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

665 related articles for article (PubMed ID: 19459632)

  • 1. Reactivity and regioselectivity in 1,3-dipolar cycloadditions of azides to strained alkynes and alkenes: a computational study.
    Schoenebeck F; Ess DH; Jones GO; Houk KN
    J Am Chem Soc; 2009 Jun; 131(23):8121-33. PubMed ID: 19459632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predictions of substituent effects in thermal azide 1,3-dipolar cycloadditions: implications for dynamic combinatorial (reversible) and click (irreversible) chemistry.
    Jones GO; Houk KN
    J Org Chem; 2008 Feb; 73(4):1333-42. PubMed ID: 18211089
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transition states of strain-promoted metal-free click chemistry: 1,3-dipolar cycloadditions of phenyl azide and cyclooctynes.
    Ess DH; Jones GO; Houk KN
    Org Lett; 2008 Apr; 10(8):1633-6. PubMed ID: 18363405
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theory of 1,3-dipolar cycloadditions: distortion/interaction and frontier molecular orbital models.
    Ess DH; Houk KN
    J Am Chem Soc; 2008 Aug; 130(31):10187-98. PubMed ID: 18613669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ring strain energy in the cyclooctyl system. The effect of strain energy on [3 + 2] cycloaddition reactions with azides.
    Bach RD
    J Am Chem Soc; 2009 Apr; 131(14):5233-43. PubMed ID: 19301865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strain-promoted azide-alkyne cycloadditions of benzocyclononynes.
    Tummatorn J; Batsomboon P; Clark RJ; Alabugin IV; Dudley GB
    J Org Chem; 2012 Mar; 77(5):2093-7. PubMed ID: 22316100
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alkene distortion energies and torsional effects control reactivities, and stereoselectivities of azide cycloadditions to norbornene and substituted norbornenes.
    Lopez SA; Houk KN
    J Org Chem; 2013 Mar; 78(5):1778-83. PubMed ID: 22764840
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural Distortion of Cycloalkynes Influences Cycloaddition Rates both by Strain and Interaction Energies.
    Hamlin TA; Levandowski BJ; Narsaria AK; Houk KN; Bickelhaupt FM
    Chemistry; 2019 May; 25(25):6342-6348. PubMed ID: 30779472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 1,3-Dipolar cycloaddition of organic azides to alkynes by a dicopper-substituted silicotungstate.
    Kamata K; Nakagawa Y; Yamaguchi K; Mizuno N
    J Am Chem Soc; 2008 Nov; 130(46):15304-10. PubMed ID: 18950175
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ruthenium-catalyzed azide-alkyne cycloaddition: scope and mechanism.
    Boren BC; Narayan S; Rasmussen LK; Zhang L; Zhao H; Lin Z; Jia G; Fokin VV
    J Am Chem Soc; 2008 Jul; 130(28):8923-30. PubMed ID: 18570425
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational study of the 1,3-dipolar cycloaddition between methyl 2-trifluorobutynoate and substituted azides in terms of reactivity indices and activation parameters.
    Salah M; Komiha N; Kabbaj OK; Ghailane R; Marakchi K
    J Mol Graph Model; 2017 May; 73():143-151. PubMed ID: 28279822
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrophilic Azides for Materials Synthesis and Chemical Biology.
    Xie S; Sundhoro M; Houk KN; Yan M
    Acc Chem Res; 2020 Apr; 53(4):937-948. PubMed ID: 32207916
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ring closure to beta-turn mimics via copper-catalyzed azide/alkyne cycloadditions.
    Angell Y; Burgess K
    J Org Chem; 2005 Nov; 70(23):9595-8. PubMed ID: 16268639
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms and transition states of 1,3-dipolar cycloadditions of phenyl azide with enamines: a computational analysis.
    Lopez SA; Munk ME; Houk KN
    J Org Chem; 2013 Feb; 78(4):1576-82. PubMed ID: 23347077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activation energies of pericyclic reactions: performance of DFT, MP2, and CBS-QB3 methods for the prediction of activation barriers and reaction energetics of 1,3-dipolar cycloadditions, and revised activation enthalpies for a standard set of hydrocarbon pericyclic reactions.
    Ess DH; Houk KN
    J Phys Chem A; 2005 Oct; 109(42):9542-53. PubMed ID: 16866406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regioselectivity of vinyl sulfone based 1,3-dipolar cycloaddition reactions with sugar azides by computational and experimental studies.
    Sahu D; Dey S; Pathak T; Ganguly B
    Org Lett; 2014 Apr; 16(8):2100-3. PubMed ID: 24697165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cyclooctyne-based reagents for uncatalyzed click chemistry: A computational survey.
    Chenoweth K; Chenoweth D; Goddard WA
    Org Biomol Chem; 2009 Dec; 7(24):5255-8. PubMed ID: 20024122
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Moderating strain without sacrificing reactivity: design of fast and tunable noncatalyzed alkyne-azide cycloadditions via stereoelectronically controlled transition state stabilization.
    Gold B; Dudley GB; Alabugin IV
    J Am Chem Soc; 2013 Jan; 135(4):1558-69. PubMed ID: 23272641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stopped-flow kinetics of tetrazine cycloadditions; experimental and computational studies toward sequential transition states.
    Sadasivam DV; Prasad E; Flowers RA; Birney DM
    J Phys Chem A; 2006 Feb; 110(4):1288-94. PubMed ID: 16435789
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective transition state stabilization via hyperconjugative and conjugative assistance: stereoelectronic concept for copper-free click chemistry.
    Gold B; Shevchenko NE; Bonus N; Dudley GB; Alabugin IV
    J Org Chem; 2012 Jan; 77(1):75-89. PubMed ID: 22077877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.