These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 19459679)
21. Overexpression of sinapine esterase BnSCE3 in oilseed rape seeds triggers global changes in seed metabolism. Clauss K; von Roepenack-Lahaye E; Böttcher C; Roth MR; Welti R; Erban A; Kopka J; Scheel D; Milkowski C; Strack D Plant Physiol; 2011 Mar; 155(3):1127-45. PubMed ID: 21248075 [TBL] [Abstract][Full Text] [Related]
22. Dynamic metabolic changes in seeds and seedlings of Brassica napus (oilseed rape) suppressing UGT84A9 reveal plasticity and molecular regulation of the phenylpropanoid pathway. Hettwer K; Böttcher C; Frolov A; Mittasch J; Albert A; von Roepenack-Lahaye E; Strack D; Milkowski C Phytochemistry; 2016 Apr; 124():46-57. PubMed ID: 26833384 [TBL] [Abstract][Full Text] [Related]
23. Reprogramming the phenylpropanoid metabolism in seeds of oilseed rape by suppressing the orthologs of reduced epidermal fluorescence1. Mittasch J; Böttcher C; Frolov A; Strack D; Milkowski C Plant Physiol; 2013 Apr; 161(4):1656-69. PubMed ID: 23424250 [TBL] [Abstract][Full Text] [Related]
24. Metabolome classification of Brassica napus L. organs via UPLC-QTOF-PDA-MS and their anti-oxidant potential. Farag MA; Sharaf Eldin MG; Kassem H; Abou el Fetouh M Phytochem Anal; 2013; 24(3):277-87. PubMed ID: 23055344 [TBL] [Abstract][Full Text] [Related]
25. A detailed survey of seed coat flavonoids in developing seeds of Brassica napus L. Auger B; Marnet N; Gautier V; Maia-Grondard A; Leprince F; Renard M; Guyot S; Nesi N; Routaboul JM J Agric Food Chem; 2010 May; 58(10):6246-56. PubMed ID: 20429588 [TBL] [Abstract][Full Text] [Related]
26. Enrichment of carotenoids in flaxseed (Linum usitatissimum) by metabolic engineering with introduction of bacterial phytoene synthase gene crtB. Fujisawa M; Watanabe M; Choi SK; Teramoto M; Ohyama K; Misawa N J Biosci Bioeng; 2008 Jun; 105(6):636-41. PubMed ID: 18640603 [TBL] [Abstract][Full Text] [Related]
27. Analysis of phenolic choline esters from seeds of Arabidopsis thaliana and Brassica napus by capillary liquid chromatography/electrospray- tandem mass spectrometry. Böttcher C; von Roepenack-Lahaye E; Schmidt J; Clemens S; Scheel D J Mass Spectrom; 2009 Apr; 44(4):466-76. PubMed ID: 19034950 [TBL] [Abstract][Full Text] [Related]
28. Expression of green fluorescent protein in pollen of oilseed rape (Brassica napus L.) and its utility for assessing pollen movement in the field. Moon HS; Halfhill MD; Hudson LC; Millwood RJ; Stewart CN Biotechnol J; 2006 Oct; 1(10):1147-52. PubMed ID: 17004298 [TBL] [Abstract][Full Text] [Related]
29. Modification of oil and glucosinolate content in canola seeds with altered expression of Brassica napus LEAFY COTYLEDON1. Elahi N; Duncan RW; Stasolla C Plant Physiol Biochem; 2016 Mar; 100():52-63. PubMed ID: 26773545 [TBL] [Abstract][Full Text] [Related]
30. Characterisation of plant tocopherol cyclases and their overexpression in transgenic Brassica napus seeds. Kumar R; Raclaru M; Schüsseler T; Gruber J; Sadre R; Lühs W; Zarhloul KM; Friedt W; Enders D; Frentzen M; Weier D FEBS Lett; 2005 Feb; 579(6):1357-64. PubMed ID: 15733841 [TBL] [Abstract][Full Text] [Related]
31. A strategy for targeting recombinant proteins to protein storage vacuoles by fusion to Brassica napus napin in napin-depleted seeds. Hegedus DD; Baron M; Labbe N; Coutu C; Lydiate D; Lui H; Rozwadowski K Protein Expr Purif; 2014 Mar; 95():162-8. PubMed ID: 24394588 [TBL] [Abstract][Full Text] [Related]
32. Coordinate expression of multiple bacterial carotenoid genes in canola leading to altered carotenoid production. Ravanello MP; Ke D; Alvarez J; Huang B; Shewmaker CK Metab Eng; 2003 Oct; 5(4):255-63. PubMed ID: 14642353 [TBL] [Abstract][Full Text] [Related]
33. Towards the proteome of Brassica napus phloem sap. Giavalisco P; Kapitza K; Kolasa A; Buhtz A; Kehr J Proteomics; 2006 Feb; 6(3):896-909. PubMed ID: 16400686 [TBL] [Abstract][Full Text] [Related]
34. Functional analysis of the Brassica napus L. phytoene synthase (PSY) gene family. López-Emparán A; Quezada-Martinez D; Zúñiga-Bustos M; Cifuentes V; Iñiguez-Luy F; Federico ML PLoS One; 2014; 9(12):e114878. PubMed ID: 25506829 [TBL] [Abstract][Full Text] [Related]
35. Targeted modulation of sinapine biosynthesis pathway for seed quality improvement in Brassica napus. Bhinu VS; Schäfer UA; Li R; Huang J; Hannoufa A Transgenic Res; 2009 Feb; 18(1):31-44. PubMed ID: 18612839 [TBL] [Abstract][Full Text] [Related]
36. Phenolic composition analysis and gene expression in developing seeds of yellow- and black-seeded Brassica napus. Jiang J; Shao Y; Li A; Lu C; Zhang Y; Wang Y J Integr Plant Biol; 2013 Jun; 55(6):537-51. PubMed ID: 23445079 [TBL] [Abstract][Full Text] [Related]
37. Overexpression of Brassica napus MPK4 enhances resistance to Sclerotinia sclerotiorum in oilseed rape. Wang Z; Mao H; Dong C; Ji R; Cai L; Fu H; Liu S Mol Plant Microbe Interact; 2009 Mar; 22(3):235-44. PubMed ID: 19245318 [TBL] [Abstract][Full Text] [Related]
38. The lipid polyester composition of Arabidopsis thaliana and Brassica napus seeds. Molina I; Bonaventure G; Ohlrogge J; Pollard M Phytochemistry; 2006 Dec; 67(23):2597-610. PubMed ID: 17055542 [TBL] [Abstract][Full Text] [Related]
39. Modern Breeding and Biotechnological Approaches to Enhance Carotenoid Accumulation in Seeds. Federico ML; Schmidt MA Subcell Biochem; 2016; 79():345-58. PubMed ID: 27485229 [TBL] [Abstract][Full Text] [Related]
40. Gene silencing of BnaA09.ZEP and BnaC09.ZEP confers orange color in Brassica napus flowers. Liu Y; Ye S; Yuan G; Ma X; Heng S; Yi B; Ma C; Shen J; Tu J; Fu T; Wen J Plant J; 2020 Nov; 104(4):932-949. PubMed ID: 32808386 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]