BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 19459718)

  • 1. An evaluation of three signal-detection algorithms using a highly inclusive reference event database.
    Hochberg AM; Hauben M; Pearson RK; O'Hara DJ; Reisinger SJ; Goldsmith DI; Gould AL; Madigan D
    Drug Saf; 2009; 32(6):509-25. PubMed ID: 19459718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of the MedDRA hierarchy on pharmacovigilance data mining results.
    Pearson RK; Hauben M; Goldsmith DI; Gould AL; Madigan D; O'Hara DJ; Reisinger SJ; Hochberg AM
    Int J Med Inform; 2009 Dec; 78(12):e97-e103. PubMed ID: 19230751
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An experimental investigation of masking in the US FDA adverse event reporting system database.
    Wang HW; Hochberg AM; Pearson RK; Hauben M
    Drug Saf; 2010 Dec; 33(12):1117-33. PubMed ID: 21077702
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative performance of two quantitative safety signalling methods: implications for use in a pharmacovigilance department.
    Almenoff JS; LaCroix KK; Yuen NA; Fram D; DuMouchel W
    Drug Saf; 2006; 29(10):875-87. PubMed ID: 16970511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potential use of data-mining algorithms for the detection of 'surprise' adverse drug reactions.
    Hauben M; Horn S; Reich L
    Drug Saf; 2007; 30(2):143-55. PubMed ID: 17253879
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigating Overlap in Signals from EVDAS, FAERS, and VigiBase
    Vogel U; van Stekelenborg J; Dreyfus B; Garg A; Habib M; Hosain R; Wisniewski A
    Drug Saf; 2020 Apr; 43(4):351-362. PubMed ID: 32020559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reducing the noise in signal detection of adverse drug reactions by standardizing the background: a pilot study on analyses of proportional reporting ratios-by-therapeutic area.
    Grundmark B; Holmberg L; Garmo H; Zethelius B
    Eur J Clin Pharmacol; 2014 May; 70(5):627-35. PubMed ID: 24599513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Postmarketing surveillance of potentially fatal reactions to oncology drugs: potential utility of two signal-detection algorithms.
    Hauben M; Reich L; Chung S
    Eur J Clin Pharmacol; 2004 Dec; 60(10):747-50. PubMed ID: 15619136
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of screening algorithms and computer systems to efficiently signal higher-than-expected combinations of drugs and events in the US FDA's spontaneous reports database.
    Szarfman A; Machado SG; O'Neill RT
    Drug Saf; 2002; 25(6):381-92. PubMed ID: 12071774
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Illusions of objectivity and a recommendation for reporting data mining results.
    Hauben M; Reich L; Gerrits CM; Younus M
    Eur J Clin Pharmacol; 2007 May; 63(5):517-21. PubMed ID: 17364192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pilot evaluation of an automated method to decrease false-positive signals induced by co-prescriptions in spontaneous reporting databases.
    Avillach P; Salvo F; Thiessard F; Miremont-Salamé G; Fourrier-Reglat A; Haramburu F; Bégaud B; Moore N; Pariente A;
    Pharmacoepidemiol Drug Saf; 2014 Feb; 23(2):186-94. PubMed ID: 23670805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reports of hyperkalemia after publication of RALES--a pharmacovigilance study.
    Hauben M; Reich L; Gerrits CM
    Pharmacoepidemiol Drug Saf; 2006 Nov; 15(11):775-83. PubMed ID: 16804951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel Adverse Events of Iloperidone: A Disproportionality Analysis in US Food and Drug Administration Adverse Event Reporting System (FAERS) Database.
    Subeesh V; Maheswari E; Singh H; Beulah TE; Swaroop AM
    Curr Drug Saf; 2019; 14(1):21-26. PubMed ID: 30362421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Implementation and Visualization of the Tree-Based Scan Statistic for Safety Event Monitoring in Longitudinal Electronic Health Data.
    Schachterle SE; Hurley S; Liu Q; Petronis KR; Bate A
    Drug Saf; 2019 Jun; 42(6):727-741. PubMed ID: 30617498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Systematic investigation of time windows for adverse event data mining for recently approved drugs.
    Hochberg AM; Hauben M; Pearson RK; O'Hara DJ; Reisinger SJ
    J Clin Pharmacol; 2009 Jun; 49(6):626-33. PubMed ID: 19451402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Criteria revision and performance comparison of three methods of signal detection applied to the spontaneous reporting database of a pharmaceutical manufacturer.
    Matsushita Y; Kuroda Y; Niwa S; Sonehara S; Hamada C; Yoshimura I
    Drug Saf; 2007; 30(8):715-26. PubMed ID: 17696584
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Commonality of drug-associated adverse events detected by 4 commonly used data mining algorithms.
    Sakaeda T; Kadoyama K; Minami K; Okuno Y
    Int J Med Sci; 2014; 11(5):461-5. PubMed ID: 24688309
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Safety related drug-labelling changes: findings from two data mining algorithms.
    Hauben M; Reich L
    Drug Saf; 2004; 27(10):735-44. PubMed ID: 15350157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Risk of hepatotoxicity associated with the use of telithromycin: a signal detection using data mining algorithms.
    Chen Y; Guo JJ; Healy DP; Lin X; Patel NC
    Ann Pharmacother; 2008 Dec; 42(12):1791-6. PubMed ID: 19033479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How do patients contribute to signal detection? : A retrospective analysis of spontaneous reporting of adverse drug reactions in the UK's Yellow Card Scheme.
    Hazell L; Cornelius V; Hannaford P; Shakir S; Avery AJ;
    Drug Saf; 2013 Mar; 36(3):199-206. PubMed ID: 23444232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.