These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
509 related articles for article (PubMed ID: 19459782)
1. Dynamics of adaptive microevolution of hypermutable Pseudomonas aeruginosa during chronic pulmonary infection in patients with cystic fibrosis. Hoboth C; Hoffmann R; Eichner A; Henke C; Schmoldt S; Imhof A; Heesemann J; Hogardt M J Infect Dis; 2009 Jul; 200(1):118-30. PubMed ID: 19459782 [TBL] [Abstract][Full Text] [Related]
2. Adaptation of Pseudomonas aeruginosa during persistence in the cystic fibrosis lung. Hogardt M; Heesemann J Int J Med Microbiol; 2010 Dec; 300(8):557-62. PubMed ID: 20943439 [TBL] [Abstract][Full Text] [Related]
3. Microevolution of Pseudomonas aeruginosa to a chronic pathogen of the cystic fibrosis lung. Hogardt M; Heesemann J Curr Top Microbiol Immunol; 2013; 358():91-118. PubMed ID: 22311171 [TBL] [Abstract][Full Text] [Related]
4. Stage-specific adaptation of hypermutable Pseudomonas aeruginosa isolates during chronic pulmonary infection in patients with cystic fibrosis. Hogardt M; Hoboth C; Schmoldt S; Henke C; Bader L; Heesemann J J Infect Dis; 2007 Jan; 195(1):70-80. PubMed ID: 17152010 [TBL] [Abstract][Full Text] [Related]
5. Mucoid Pseudomonas aeruginosa isolates maintain the biofilm formation capacity and the gene expression profiles during the chronic lung infection of CF patients. Lee B; Schjerling CK; Kirkby N; Hoffmann N; Borup R; Molin S; Høiby N; Ciofu O APMIS; 2011 Apr; 119(4-5):263-74. PubMed ID: 21492226 [TBL] [Abstract][Full Text] [Related]
7. Genetic adaptation of Pseudomonas aeruginosa during chronic lung infection of patients with cystic fibrosis: strong and weak mutators with heterogeneous genetic backgrounds emerge in mucA and/or lasR mutants. Ciofu O; Mandsberg LF; Bjarnsholt T; Wassermann T; Høiby N Microbiology (Reading); 2010 Apr; 156(Pt 4):1108-1119. PubMed ID: 20019078 [TBL] [Abstract][Full Text] [Related]
8. Proteome analysis reveals adaptation of Pseudomonas aeruginosa to the cystic fibrosis lung environment. Sriramulu DD; Nimtz M; Romling U Proteomics; 2005 Sep; 5(14):3712-21. PubMed ID: 16097035 [TBL] [Abstract][Full Text] [Related]
9. Oxygen, cyanide and energy generation in the cystic fibrosis pathogen Pseudomonas aeruginosa. Williams HD; Zlosnik JE; Ryall B Adv Microb Physiol; 2007; 52():1-71. PubMed ID: 17027370 [TBL] [Abstract][Full Text] [Related]
10. The Pseudomonas aeruginosa universal stress protein PA4352 is essential for surviving anaerobic energy stress. Boes N; Schreiber K; Härtig E; Jaensch L; Schobert M J Bacteriol; 2006 Sep; 188(18):6529-38. PubMed ID: 16952944 [TBL] [Abstract][Full Text] [Related]
11. Effect of oxygen limitation on the in vitro activity of levofloxacin and other antibiotics administered by the aerosol route against Pseudomonas aeruginosa from cystic fibrosis patients. King P; Citron DM; Griffith DC; Lomovskaya O; Dudley MN Diagn Microbiol Infect Dis; 2010 Feb; 66(2):181-6. PubMed ID: 19828274 [TBL] [Abstract][Full Text] [Related]
12. Marker genes for the metabolic adaptation of Pseudomonas aeruginosa to the hypoxic cystic fibrosis lung environment. Eichner A; Günther N; Arnold M; Schobert M; Heesemann J; Hogardt M Int J Med Microbiol; 2014 Nov; 304(8):1050-61. PubMed ID: 25130702 [TBL] [Abstract][Full Text] [Related]
13. Anaerobic physiology of Pseudomonas aeruginosa in the cystic fibrosis lung. Schobert M; Jahn D Int J Med Microbiol; 2010 Dec; 300(8):549-56. PubMed ID: 20951638 [TBL] [Abstract][Full Text] [Related]
14. Fcgamma receptor IIA genotype and susceptibility to P. aeruginosa infection in patients with cystic fibrosis. De Rose V; Arduino C; Cappello N; Piana R; Salmin P; Bardessono M; Goia M; Padoan R; Bignamini E; Costantini D; Pizzamiglio G; Bennato V; Colombo C; Giunta A; Piazza A Eur J Hum Genet; 2005 Jan; 13(1):96-101. PubMed ID: 15367919 [TBL] [Abstract][Full Text] [Related]
15. Use of phage display to identify potential Pseudomonas aeruginosa gene products relevant to early cystic fibrosis airway infections. Beckmann C; Brittnacher M; Ernst R; Mayer-Hamblett N; Miller SI; Burns JL Infect Immun; 2005 Jan; 73(1):444-52. PubMed ID: 15618183 [TBL] [Abstract][Full Text] [Related]
16. Occurrence of hypermutable Pseudomonas aeruginosa in cystic fibrosis patients is associated with the oxidative stress caused by chronic lung inflammation. Ciofu O; Riis B; Pressler T; Poulsen HE; Høiby N Antimicrob Agents Chemother; 2005 Jun; 49(6):2276-82. PubMed ID: 15917521 [TBL] [Abstract][Full Text] [Related]
17. Sequence variability and functional analysis of MutS of hypermutable Pseudomonas aeruginosa cystic fibrosis isolates. Hogardt M; Schubert S; Adler K; Götzfried M; Heesemann J Int J Med Microbiol; 2006 Aug; 296(4-5):313-20. PubMed ID: 16542874 [TBL] [Abstract][Full Text] [Related]
19. Antibiotic pressure compensates the biological cost associated with Pseudomonas aeruginosa hypermutable phenotypes in vitro and in a murine model of chronic airways infection. Alcalá-Franco B; Montanari S; Cigana C; Bertoni G; Oliver A; Bragonzi A J Antimicrob Chemother; 2012 Apr; 67(4):962-9. PubMed ID: 22294647 [TBL] [Abstract][Full Text] [Related]
20. Anaerobic culture conditions favor biofilm-like phenotypes in Pseudomonas aeruginosa isolates from patients with cystic fibrosis. O'May CY; Reid DW; Kirov SM FEMS Immunol Med Microbiol; 2006 Dec; 48(3):373-80. PubMed ID: 17052266 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]