These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 19459834)

  • 41. A more straightforward derivation of the LR for a database search.
    Berger CE; Vergeer P; Buckleton JS
    Forensic Sci Int Genet; 2015 Jan; 14():156-60. PubMed ID: 25450786
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Identifying adaptor contamination when mining DNA sequence data.
    Coker JS; Davies E
    Biotechniques; 2004 Aug; 37(2):194, 196, 198. PubMed ID: 15335207
    [No Abstract]   [Full Text] [Related]  

  • 43. Identifying contributors of DNA mixtures by means of quantitative information of STR typing.
    Tvedebrink T; Eriksen PS; Mogensen HS; Morling N
    J Comput Biol; 2012 Jul; 19(7):887-902. PubMed ID: 21210742
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A novel computational strategy to predict the value of the evidence in the SNP-based forensic mixtures.
    Pascali VL
    PLoS One; 2021; 16(10):e0247344. PubMed ID: 34653182
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Patent searches for genetic sequences: how to retrieve relevant records from patented sequence databases.
    Dufresne G; Takács L; Heus HC; Codani JJ; Duval M
    Nat Biotechnol; 2002 Dec; 20(12):1269-71. PubMed ID: 12454675
    [No Abstract]   [Full Text] [Related]  

  • 46. "Getting blood from a stone": ultrasensitive forensic DNA profiling of microscopic bio-particles recovered from "touch DNA" evidence.
    Hanson EK; Ballantyne J
    Methods Mol Biol; 2013; 1039():3-17. PubMed ID: 24026682
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Inclusion probabilities and dropout.
    Curran JM; Buckleton J
    J Forensic Sci; 2010 Sep; 55(5):1171-3. PubMed ID: 20487161
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Representing genetic sequence data for pharmacogenomics: an evolutionary approach using ontological and relational models.
    Rubin DL; Shafa F; Oliver DE; Hewett M; Altman RB
    Bioinformatics; 2002; 18 Suppl 1():S207-15. PubMed ID: 12169549
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Searching for first-degree familial relationships in California's offender DNA database: validation of a likelihood ratio-based approach.
    Myers SP; Timken MD; Piucci ML; Sims GA; Greenwald MA; Weigand JJ; Konzak KC; Buoncristiani MR
    Forensic Sci Int Genet; 2011 Nov; 5(5):493-500. PubMed ID: 21056023
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Launching the Greek forensic DNA database. The legal framework and arising ethical issues.
    Voultsos P; Njau S; Tairis N; Psaroulis D; Kovatsi L
    Forensic Sci Int Genet; 2011 Nov; 5(5):407-10. PubMed ID: 20851698
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Database extraction strategies for low-template evidence.
    Bleka Ø; Dørum G; Haned H; Gill P
    Forensic Sci Int Genet; 2014 Mar; 9():134-41. PubMed ID: 24528591
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Multidimensional scaling for large genomic data sets.
    Tzeng J; Lu HH; Li WH
    BMC Bioinformatics; 2008 Apr; 9():179. PubMed ID: 18394154
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Melina: motif extraction from promoter regions of potentially co-regulated genes.
    Poluliakh N; Takagi T; Nakai K
    Bioinformatics; 2003 Feb; 19(3):423-4. PubMed ID: 12584132
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Establishing a database of Canadian feline mitotypes for forensic use.
    Arcieri M; Agostinelli G; Gray Z; Spadaro A; Lyons LA; Webb KM
    Forensic Sci Int Genet; 2016 May; 22():169-174. PubMed ID: 26971852
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Using the information embedded in the mixed profiles to assist in determining the identity of the deceased and the suspect in a deficiency case.
    Xiao C; Jiang Y; Liang M
    Forensic Sci Int; 2019 Jul; 300():e13-e19. PubMed ID: 31056342
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A statistical framework for the interpretation of mtDNA mixtures: forensic and medical applications.
    Egeland T; Salas A
    PLoS One; 2011; 6(10):e26723. PubMed ID: 22053205
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Evaluation of forensic DNA mixture evidence: protocol for evaluation, interpretation, and statistical calculations using the combined probability of inclusion.
    Bieber FR; Buckleton JS; Budowle B; Butler JM; Coble MD
    BMC Genet; 2016 Aug; 17(1):125. PubMed ID: 27580588
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Familial searching on DNA mixtures with dropout.
    Slooten K
    Forensic Sci Int Genet; 2016 May; 22():128-138. PubMed ID: 26905597
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Reducing storage requirements for biological sequence comparison.
    Roberts M; Hayes W; Hunt BR; Mount SM; Yorke JA
    Bioinformatics; 2004 Dec; 20(18):3363-9. PubMed ID: 15256412
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Inferring the number of contributors to mixed DNA profiles.
    Paoletti DR; Krane DE; Raymer ML; Doom TE
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(1):113-22. PubMed ID: 21519119
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.