BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 19459974)

  • 1. The ITS region as a target for characterization of fungal communities using emerging sequencing technologies.
    Nilsson RH; Ryberg M; Abarenkov K; Sjökvist E; Kristiansson E
    FEMS Microbiol Lett; 2009 Jul; 296(1):97-101. PubMed ID: 19459974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A bioinformatics pipeline for sequence-based analyses of fungal biodiversity.
    Taylor DL; Houston S
    Methods Mol Biol; 2011; 722():141-55. PubMed ID: 21590418
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Different Amplicon Targets for Sequencing-Based Studies of Fungal Diversity.
    De Filippis F; Laiola M; Blaiotta G; Ercolini D
    Appl Environ Microbiol; 2017 Sep; 83(17):. PubMed ID: 28625991
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ignored sediment fungal populations in water supply reservoirs are revealed by quantitative PCR and 454 pyrosequencing.
    Zhang H; Huang T; Chen S
    BMC Microbiol; 2015 Feb; 15():44. PubMed ID: 25886005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Meta-analysis of deep-sequenced fungal communities indicates limited taxon sharing between studies and the presence of biogeographic patterns.
    Meiser A; Bálint M; Schmitt I
    New Phytol; 2014 Jan; 201(2):623-635. PubMed ID: 24111803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metataxonomic comparison between internal transcribed spacer and 26S ribosomal large subunit (LSU) rDNA gene.
    Mota-Gutierrez J; Ferrocino I; Rantsiou K; Cocolin L
    Int J Food Microbiol; 2019 Feb; 290():132-140. PubMed ID: 30340111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 454 Pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity.
    Buée M; Reich M; Murat C; Morin E; Nilsson RH; Uroz S; Martin F
    New Phytol; 2009 Oct; 184(2):449-456. PubMed ID: 19703112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of the fungal community structures of imported wheat using high-throughput sequencing technology.
    Shi Y; Cheng Y; Wang Y; Zhang G; Gao R; Xiang C; Feng J; Lou D; Liu Y
    PLoS One; 2017; 12(2):e0171894. PubMed ID: 28241020
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fungal identification using a Bayesian classifier and the Warcup training set of internal transcribed spacer sequences.
    Deshpande V; Wang Q; Greenfield P; Charleston M; Porras-Alfaro A; Kuske CR; Cole JR; Midgley DJ; Tran-Dinh N
    Mycologia; 2016; 108(1):1-5. PubMed ID: 26553774
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular taxonomy and biodiversity of rock fungal communities in an urban environment (Vienna, Austria).
    Sterflinger K; Prillinger H
    Antonie Van Leeuwenhoek; 2001 Dec; 80(3-4):275-86. PubMed ID: 11827213
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mycobiome: Approaches to analysis of intestinal fungi.
    Tang J; Iliev ID; Brown J; Underhill DM; Funari VA
    J Immunol Methods; 2015 Jun; 421():112-121. PubMed ID: 25891793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-read DNA metabarcoding of ribosomal RNA in the analysis of fungi from aquatic environments.
    Heeger F; Bourne EC; Baschien C; Yurkov A; Bunk B; Spröer C; Overmann J; Mazzoni CJ; Monaghan MT
    Mol Ecol Resour; 2018 Nov; 18(6):1500-1514. PubMed ID: 30106226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ghost-tree: creating hybrid-gene phylogenetic trees for diversity analyses.
    Fouquier J; Rideout JR; Bolyen E; Chase J; Shiffer A; McDonald D; Knight R; Caporaso JG; Kelley ST
    Microbiome; 2016 Feb; 4():11. PubMed ID: 26905735
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of sequencing the D2 region of the large subunit ribosomal RNA gene (MicroSEQ®) versus the internal transcribed spacer (ITS) regions using two public databases for identification of common and uncommon clinically relevant fungal species.
    Arbefeville S; Harris A; Ferrieri P
    J Microbiol Methods; 2017 Sep; 140():40-46. PubMed ID: 28647582
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of microbial communities by graph partitioning in a study of soil fungi in two Alpine meadows.
    Zinger L; Coissac E; Choler P; Geremia RA
    Appl Environ Microbiol; 2009 Sep; 75(18):5863-70. PubMed ID: 19617385
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vertical distribution of fungal communities in tallgrass prairie soil.
    Jumpponen A; Jones KL; Blair J
    Mycologia; 2010; 102(5):1027-41. PubMed ID: 20943503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cohort Study of Airway Mycobiome in Adult Cystic Fibrosis Patients: Differences in Community Structure between Fungi and Bacteria Reveal Predominance of Transient Fungal Elements.
    Kramer R; Sauer-Heilborn A; Welte T; Guzman CA; Abraham WR; Höfle MG
    J Clin Microbiol; 2015 Sep; 53(9):2900-7. PubMed ID: 26135861
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Patterns of fungal diversity in New Zealand Nothofagus forests.
    Johnston PR; Johansen RB; Williams AF; Paula Wikie J; Park D
    Fungal Biol; 2012 Mar; 116(3):401-12. PubMed ID: 22385622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fungal DNA barcoding.
    Xu J
    Genome; 2016 Nov; 59(11):913-932. PubMed ID: 27829306
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Customization of a DADA2-based pipeline for fungal internal transcribed spacer 1 (ITS1) amplicon data sets.
    Rolling T; Zhai B; Frame J; Hohl TM; Taur Y
    JCI Insight; 2022 Jan; 7(1):. PubMed ID: 34813499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.