These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 19459974)

  • 1. The ITS region as a target for characterization of fungal communities using emerging sequencing technologies.
    Nilsson RH; Ryberg M; Abarenkov K; Sjökvist E; Kristiansson E
    FEMS Microbiol Lett; 2009 Jul; 296(1):97-101. PubMed ID: 19459974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A bioinformatics pipeline for sequence-based analyses of fungal biodiversity.
    Taylor DL; Houston S
    Methods Mol Biol; 2011; 722():141-55. PubMed ID: 21590418
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Different Amplicon Targets for Sequencing-Based Studies of Fungal Diversity.
    De Filippis F; Laiola M; Blaiotta G; Ercolini D
    Appl Environ Microbiol; 2017 Sep; 83(17):. PubMed ID: 28625991
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ignored sediment fungal populations in water supply reservoirs are revealed by quantitative PCR and 454 pyrosequencing.
    Zhang H; Huang T; Chen S
    BMC Microbiol; 2015 Feb; 15():44. PubMed ID: 25886005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Meta-analysis of deep-sequenced fungal communities indicates limited taxon sharing between studies and the presence of biogeographic patterns.
    Meiser A; Bálint M; Schmitt I
    New Phytol; 2014 Jan; 201(2):623-635. PubMed ID: 24111803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metataxonomic comparison between internal transcribed spacer and 26S ribosomal large subunit (LSU) rDNA gene.
    Mota-Gutierrez J; Ferrocino I; Rantsiou K; Cocolin L
    Int J Food Microbiol; 2019 Feb; 290():132-140. PubMed ID: 30340111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 454 Pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity.
    Buée M; Reich M; Murat C; Morin E; Nilsson RH; Uroz S; Martin F
    New Phytol; 2009 Oct; 184(2):449-456. PubMed ID: 19703112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of the fungal community structures of imported wheat using high-throughput sequencing technology.
    Shi Y; Cheng Y; Wang Y; Zhang G; Gao R; Xiang C; Feng J; Lou D; Liu Y
    PLoS One; 2017; 12(2):e0171894. PubMed ID: 28241020
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fungal identification using a Bayesian classifier and the Warcup training set of internal transcribed spacer sequences.
    Deshpande V; Wang Q; Greenfield P; Charleston M; Porras-Alfaro A; Kuske CR; Cole JR; Midgley DJ; Tran-Dinh N
    Mycologia; 2016; 108(1):1-5. PubMed ID: 26553774
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular taxonomy and biodiversity of rock fungal communities in an urban environment (Vienna, Austria).
    Sterflinger K; Prillinger H
    Antonie Van Leeuwenhoek; 2001 Dec; 80(3-4):275-86. PubMed ID: 11827213
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mycobiome: Approaches to analysis of intestinal fungi.
    Tang J; Iliev ID; Brown J; Underhill DM; Funari VA
    J Immunol Methods; 2015 Jun; 421():112-121. PubMed ID: 25891793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-read DNA metabarcoding of ribosomal RNA in the analysis of fungi from aquatic environments.
    Heeger F; Bourne EC; Baschien C; Yurkov A; Bunk B; Spröer C; Overmann J; Mazzoni CJ; Monaghan MT
    Mol Ecol Resour; 2018 Nov; 18(6):1500-1514. PubMed ID: 30106226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ghost-tree: creating hybrid-gene phylogenetic trees for diversity analyses.
    Fouquier J; Rideout JR; Bolyen E; Chase J; Shiffer A; McDonald D; Knight R; Caporaso JG; Kelley ST
    Microbiome; 2016 Feb; 4():11. PubMed ID: 26905735
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of sequencing the D2 region of the large subunit ribosomal RNA gene (MicroSEQ®) versus the internal transcribed spacer (ITS) regions using two public databases for identification of common and uncommon clinically relevant fungal species.
    Arbefeville S; Harris A; Ferrieri P
    J Microbiol Methods; 2017 Sep; 140():40-46. PubMed ID: 28647582
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of microbial communities by graph partitioning in a study of soil fungi in two Alpine meadows.
    Zinger L; Coissac E; Choler P; Geremia RA
    Appl Environ Microbiol; 2009 Sep; 75(18):5863-70. PubMed ID: 19617385
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vertical distribution of fungal communities in tallgrass prairie soil.
    Jumpponen A; Jones KL; Blair J
    Mycologia; 2010; 102(5):1027-41. PubMed ID: 20943503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cohort Study of Airway Mycobiome in Adult Cystic Fibrosis Patients: Differences in Community Structure between Fungi and Bacteria Reveal Predominance of Transient Fungal Elements.
    Kramer R; Sauer-Heilborn A; Welte T; Guzman CA; Abraham WR; Höfle MG
    J Clin Microbiol; 2015 Sep; 53(9):2900-7. PubMed ID: 26135861
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Patterns of fungal diversity in New Zealand Nothofagus forests.
    Johnston PR; Johansen RB; Williams AF; Paula Wikie J; Park D
    Fungal Biol; 2012 Mar; 116(3):401-12. PubMed ID: 22385622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fungal DNA barcoding.
    Xu J
    Genome; 2016 Nov; 59(11):913-932. PubMed ID: 27829306
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Customization of a DADA2-based pipeline for fungal internal transcribed spacer 1 (ITS1) amplicon data sets.
    Rolling T; Zhai B; Frame J; Hohl TM; Taur Y
    JCI Insight; 2022 Jan; 7(1):. PubMed ID: 34813499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.