BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 19460180)

  • 1. The effect of oxide overlayers on secondary electron dopant mapping.
    Dapor M; Jepson MA; Inkson BJ; Rodenburg C
    Microsc Microanal; 2009 Jun; 15(3):237-43. PubMed ID: 19460180
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-dimensional dopant profiling with low-energy SEM.
    Mika F; Frank L
    J Microsc; 2008 Apr; 230(Pt 1):76-83. PubMed ID: 18387042
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative secondary electron energy filtering in a scanning electron microscope and its applications.
    Kazemian P; Mentink SA; Rodenburg C; Humphreys CJ
    Ultramicroscopy; 2007; 107(2-3):140-50. PubMed ID: 16872746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-pass energy-filtered photoemission electron microscopy imaging of dopants in silicon.
    Hovorka M; Frank L; Valdaitsev D; Nepijko SA; Elmers HS; Schönhense G
    J Microsc; 2008 Apr; 230(Pt 1):42-7. PubMed ID: 18387038
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy selective scanning electron microscopy to reduce the effect of contamination layers on scanning electron microscope dopant mapping.
    Rodenburg C; Jepson MA; Bosch EG; Dapor M
    Ultramicroscopy; 2010 Aug; 110(9):1185-91. PubMed ID: 20471172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of a 1H-benzoimidazole derivative as an n-type dopant and to enable air-stable solution-processed n-channel organic thin-film transistors.
    Wei P; Oh JH; Dong G; Bao Z
    J Am Chem Soc; 2010 Jul; 132(26):8852-3. PubMed ID: 20552967
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Doping highly ordered organic semiconductors: experimental results and fits to a self-consistent model of excitonic processes, doping, and transport.
    Chen SG; Stradins P; Gregg BA
    J Phys Chem B; 2005 Jul; 109(28):13451-60. PubMed ID: 16852683
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-dimensional quantitative mapping of arsenic in nanometer-scale silicon devices using STEM EELS-EDX spectroscopy.
    Servanton G; Pantel R; Juhel M; Bertin F
    Micron; 2009; 40(5-6):543-51. PubMed ID: 19414268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping of process-induced dopant redistributions by electron holography.
    Rau WD; Orchowski A
    Microsc Microanal; 2004 Aug; 10(4):462-9. PubMed ID: 15327707
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlled nanoscale doping of semiconductors via molecular monolayers.
    Ho JC; Yerushalmi R; Jacobson ZA; Fan Z; Alley RL; Javey A
    Nat Mater; 2008 Jan; 7(1):62-7. PubMed ID: 17994026
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resolution limits of secondary electron dopant contrast in helium ion and scanning electron microscopy.
    Jepson M; Liu X; Bell D; Ferranti D; Inkson B; Rodenburg C
    Microsc Microanal; 2011 Aug; 17(4):637-42. PubMed ID: 21745435
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unravelling new principles of site-selective doping contrast in the dual-beam focused ion beam/scanning electron microscope.
    Chee AKW
    Ultramicroscopy; 2020 Jun; 213():112947. PubMed ID: 32361280
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fermi level pinning characterisation on ammonium fluoride-treated surfaces of silicon by energy-filtered doping contrast in the scanning electron microscope.
    Chee AK
    Sci Rep; 2016 Aug; 6():32003. PubMed ID: 27576347
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Doping and defect association in AZrO(3) (A = Ca, Ba) and LaMO(3) (M = Sc, Ga) perovskite-type ionic conductors.
    Islam MS; Slater PR; Tolchard JR; Dinges T
    Dalton Trans; 2004 Oct; (19):3061-6. PubMed ID: 15452631
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dopant profiling based on scanning electron and helium ion microscopy.
    Chee AKW; Boden SA
    Ultramicroscopy; 2016 Feb; 161():51-58. PubMed ID: 26624515
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy-filtered imaging in a scanning electron microscope for dopant contrast in InP.
    Tsurumi D; Hamada K; Kawasaki Y
    J Electron Microsc (Tokyo); 2010 Aug; 59 Suppl 1():S183-7. PubMed ID: 20601354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electron holography study for two-dimensional dopant profile measurement with specimens prepared by backside ion milling.
    Yoo JH; Yang JM; Ulugbek S; Ahn CW; Hwang WJ; Park JK; Park CM; Hong SB; Kim JJ; Shindo D
    J Electron Microsc (Tokyo); 2008 Jan; 57(1):13-8. PubMed ID: 18175780
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monte Carlo simulation of dopant contrast in scanning electron microscope image.
    Mao SF; Ding ZJ
    J Nanosci Nanotechnol; 2009 Feb; 9(2):1644-6. PubMed ID: 19441590
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of highly silicon-doped marker layers in the investigation of unintentional doping in GaN on sapphire.
    Oliver RA
    Ultramicroscopy; 2010 Dec; 111(1):73-8. PubMed ID: 21115277
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elastic scattering of high-energy electrons by dopant atoms within a crystal in transmission electron microscopy.
    Mendis BG
    Acta Crystallogr A; 2008 Nov; 64(Pt 6):613-24. PubMed ID: 18931417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.