These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 19460414)

  • 1. Real-time in vivo imaging of mercury uptake in Caenorhabditis elegans through the foodchain.
    Chapleau RR; Sagermann M
    Toxicology; 2009 Jul; 261(3):136-42. PubMed ID: 19460414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of a highly specific and noninvasive biosensor suitable for real-time in vivo imaging of mercury (II) uptake.
    Chapleau RR; Blomberg R; Ford PC; Sagermann M
    Protein Sci; 2008 Apr; 17(4):614-22. PubMed ID: 18305194
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo monitoring of mercury ions using a rhodamine-based molecular probe.
    Ko SK; Yang YK; Tae J; Shin I
    J Am Chem Soc; 2006 Nov; 128(43):14150-5. PubMed ID: 17061899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A rapid and inexpensive method to screen for common foods that reduce the action of acrylamide, a harmful substance in food.
    Hasegawa K; Miwa S; Tajima T; Tsutsumiuchi K; Taniguchi H; Miwa J
    Toxicol Lett; 2007 Dec; 175(1-3):82-8. PubMed ID: 18023302
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Beta-cell function and mass in type 2 diabetes.
    Larsen MO
    Dan Med Bull; 2009 Aug; 56(3):153-64. PubMed ID: 19728971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Nucleus of Intestinal Cells of the Bacterivore Nematode Caenorhabditis elegans as a Sensitive Sensor of Environmental Pollutants.
    Piechulek A; Berwanger L; Hemmerich P; von Mikecz A
    Methods Mol Biol; 2020; 2175():207-217. PubMed ID: 32681493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A highly selective cyanide sensing in water via fluorescence change and its application to in vivo imaging.
    Chung SY; Nam SW; Lim J; Park S; Yoon J
    Chem Commun (Camb); 2009 May; (20):2866-8. PubMed ID: 19436892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial expression of a mercury-inducible green fluorescent protein within a nanoporous latex-based biosensor coating.
    Schottel JL; Orwin PM; Anderson CR; Flickinger MC
    J Ind Microbiol Biotechnol; 2008 Apr; 35(4):283-90. PubMed ID: 18193310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo fluorescent adenosine 5'-triphosphate (ATP) imaging of Drosophila melanogaster and Caenorhabditis elegans by using a genetically encoded fluorescent ATP biosensor optimized for low temperatures.
    Tsuyama T; Kishikawa J; Han YW; Harada Y; Tsubouchi A; Noji H; Kakizuka A; Yokoyama K; Uemura T; Imamura H
    Anal Chem; 2013 Aug; 85(16):7889-96. PubMed ID: 23875533
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimizing cadmium and mercury specificity of CadR-based E. coli biosensors by redesign of CadR.
    Tao HC; Peng ZW; Li PS; Yu TA; Su J
    Biotechnol Lett; 2013 Aug; 35(8):1253-8. PubMed ID: 23609235
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A test strip platform based on a whole-cell microbial biosensor for simultaneous on-site detection of total inorganic mercury pollutants in cosmetics without the need for predigestion.
    Guo M; Wang J; Du R; Liu Y; Chi J; He X; Huang K; Luo Y; Xu W
    Biosens Bioelectron; 2020 Feb; 150():111899. PubMed ID: 31767350
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular studies of E. coli mercuric reductase gene (merA) and its impact on human health.
    Zeyaullah M; Nabi G; Malla R; Ali A
    Nepal Med Coll J; 2007 Sep; 9(3):182-5. PubMed ID: 18092437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discovery and characterization of a conserved pigment dispersing factor-like neuropeptide pathway in Caenorhabditis elegans.
    Janssen T; Husson SJ; Meelkop E; Temmerman L; Lindemans M; Verstraelen K; Rademakers S; Mertens I; Nitabach M; Jansen G; Schoofs L
    J Neurochem; 2009 Oct; 111(1):228-41. PubMed ID: 19686386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Analysis of properties of single molecules in vivo or ... why small fish is better than empty dish].
    Korzh V; Wohland T
    Ontogenez; 2012; 43(2):83-93. PubMed ID: 22650074
    [No Abstract]   [Full Text] [Related]  

  • 15. Direct in vivo imaging of essential bioinorganics in Caenorhabditis elegans.
    James SA; de Jonge MD; Howard DL; Bush AI; Paterson D; McColl G
    Metallomics; 2013 Jun; 5(6):627-35. PubMed ID: 23459751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Versatile artificial mer operons in Escherichia coli towards whole cell biosensing and adsorption of mercury.
    Zhang NX; Guo Y; Li H; Yang XQ; Gao CX; Hui CY
    PLoS One; 2021; 16(5):e0252190. PubMed ID: 34038487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of a highly metal-selective rhodamine-based probe and its use for the in vivo monitoring of mercury.
    Yang YK; Ko SK; Shin I; Tae J
    Nat Protoc; 2007; 2(7):1740-5. PubMed ID: 17641639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Caenorhabditis elegans has a phosphoproteome atypical for metazoans that is enriched in developmental and sex determination proteins.
    Zielinska DF; Gnad F; Jedrusik-Bode M; Wiśniewski JR; Mann M
    J Proteome Res; 2009 Aug; 8(8):4039-49. PubMed ID: 19530675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A highly selective and sensitive fluorescent turn-on sensor for Hg2+ and its application in live cell imaging.
    Lu H; Xiong L; Liu H; Yu M; Shen Z; Li F; You X
    Org Biomol Chem; 2009 Jun; 7(12):2554-8. PubMed ID: 19503929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly sensitive fluorescent sensor for mercury ion based on photoinduced charge transfer between fluorophore and pi-stacked T-Hg(II)-T base pairs.
    Guo L; Hu H; Sun R; Chen G
    Talanta; 2009 Aug; 79(3):775-9. PubMed ID: 19576444
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.