These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 19460452)
1. The interplay between iron and zinc metabolism in Aspergillus fumigatus. Yasmin S; Abt B; Schrettl M; Moussa TA; Werner ER; Haas H Fungal Genet Biol; 2009 Sep; 46(9):707-13. PubMed ID: 19460452 [TBL] [Abstract][Full Text] [Related]
2. SreA-mediated iron regulation in Aspergillus fumigatus. Schrettl M; Kim HS; Eisendle M; Kragl C; Nierman WC; Heinekamp T; Werner ER; Jacobsen I; Illmer P; Yi H; Brakhage AA; Haas H Mol Microbiol; 2008 Oct; 70(1):27-43. PubMed ID: 18721228 [TBL] [Abstract][Full Text] [Related]
3. An insight into the iron acquisition and homeostasis in Aureobasidium melanogenum HN6.2 strain through genome mining and transcriptome analysis. Lu Y; Liu G; Jiang H; Chi Z; Chi Z Funct Integr Genomics; 2019 Jan; 19(1):137-150. PubMed ID: 30251029 [TBL] [Abstract][Full Text] [Related]
4. SidL, an Aspergillus fumigatus transacetylase involved in biosynthesis of the siderophores ferricrocin and hydroxyferricrocin. Blatzer M; Schrettl M; Sarg B; Lindner HH; Pfaller K; Haas H Appl Environ Microbiol; 2011 Jul; 77(14):4959-66. PubMed ID: 21622789 [TBL] [Abstract][Full Text] [Related]
5. The interplay between vacuolar and siderophore-mediated iron storage in Aspergillus fumigatus. Gsaller F; Eisendle M; Lechner BE; Schrettl M; Lindner H; Müller D; Geley S; Haas H Metallomics; 2012 Dec; 4(12):1262-70. PubMed ID: 23151814 [TBL] [Abstract][Full Text] [Related]
6. Genome mining and functional genomics for siderophore production in Aspergillus niger. Franken AC; Lechner BE; Werner ER; Haas H; Lokman BC; Ram AF; van den Hondel CA; de Weert S; Punt PJ Brief Funct Genomics; 2014 Nov; 13(6):482-92. PubMed ID: 25062661 [TBL] [Abstract][Full Text] [Related]
7. Optimization of triacetylfusarinine C and ferricrocin productions in Aspergillus fumigatus. Szigeti ZM; Szaniszló S; Fazekas E; Gyémánt G; Szabon J; Antal K; Emri T; Balla J; Balla G; Csernoch L; Pócsi I Acta Microbiol Immunol Hung; 2014 Jun; 61(2):107-19. PubMed ID: 24939680 [TBL] [Abstract][Full Text] [Related]
8. EstB-mediated hydrolysis of the siderophore triacetylfusarinine C optimizes iron uptake of Aspergillus fumigatus. Kragl C; Schrettl M; Abt B; Sarg B; Lindner HH; Haas H Eukaryot Cell; 2007 Aug; 6(8):1278-85. PubMed ID: 17586718 [TBL] [Abstract][Full Text] [Related]
9. Effects of the Aspergillus fumigatus siderophore systems on the regulation of macrophage immune effector pathways and iron homeostasis. Seifert M; Nairz M; Schroll A; Schrettl M; Haas H; Weiss G Immunobiology; 2008; 213(9-10):767-78. PubMed ID: 18926292 [TBL] [Abstract][Full Text] [Related]
10. Structural requirements for the activity of the MirB ferrisiderophore transporter of Aspergillus fumigatus. Raymond-Bouchard I; Carroll CS; Nesbitt JR; Henry KA; Pinto LJ; Moinzadeh M; Scott JK; Moore MM Eukaryot Cell; 2012 Nov; 11(11):1333-44. PubMed ID: 22903978 [TBL] [Abstract][Full Text] [Related]
11. Identification of ferrichrome- and ferrioxamine B-mediated iron uptake by Aspergillus fumigatus. Park YS; Kim JY; Yun CW Biochem J; 2016 May; 473(9):1203-13. PubMed ID: 26929401 [TBL] [Abstract][Full Text] [Related]
12. Ferricrocin, a siderophore involved in intra- and transcellular iron distribution in Aspergillus fumigatus. Wallner A; Blatzer M; Schrettl M; Sarg B; Lindner H; Haas H Appl Environ Microbiol; 2009 Jun; 75(12):4194-6. PubMed ID: 19376908 [TBL] [Abstract][Full Text] [Related]
13. Site-specific rate constants for iron acquisition from transferrin by the Aspergillus fumigatus siderophores N',N'',N'''-triacetylfusarinine C and ferricrocin. Hissen AH; Moore MM J Biol Inorg Chem; 2005 May; 10(3):211-20. PubMed ID: 15770504 [TBL] [Abstract][Full Text] [Related]
14. The Siderophore Ferricrocin Mediates Iron Acquisition in Aspergillus fumigatus. Happacher I; Aguiar M; Alilou M; Abt B; Baltussen TJH; Decristoforo C; Melchers WJG; Haas H Microbiol Spectr; 2023 Jun; 11(3):e0049623. PubMed ID: 37199664 [TBL] [Abstract][Full Text] [Related]
15. The intracellular siderophore ferricrocin is involved in iron storage, oxidative-stress resistance, germination, and sexual development in Aspergillus nidulans. Eisendle M; Schrettl M; Kragl C; Müller D; Illmer P; Haas H Eukaryot Cell; 2006 Oct; 5(10):1596-603. PubMed ID: 17030991 [TBL] [Abstract][Full Text] [Related]
16. SREA is involved in regulation of siderophore biosynthesis, utilization and uptake in Aspergillus nidulans. Oberegger H; Schoeser M; Zadra I; Abt B; Haas H Mol Microbiol; 2001 Sep; 41(5):1077-89. PubMed ID: 11555288 [TBL] [Abstract][Full Text] [Related]
17. The interplay between zinc and iron homeostasis in Aspergillus fumigatus under zinc-replete conditions relies on the iron-mediated regulation of alternative transcription units of zafA and the basal amount of the ZafA zinc-responsiveness transcription factor. Vicentefranqueira R; Leal F; Marín L; Sánchez CI; Calera JA Environ Microbiol; 2019 Aug; 21(8):2787-2808. PubMed ID: 30946522 [TBL] [Abstract][Full Text] [Related]
18. Kinetic studies on the specificity of chelate-iron uptake in Aspergillus. Wiebe C; Winkelmann G J Bacteriol; 1975 Sep; 123(3):837-42. PubMed ID: 1099079 [TBL] [Abstract][Full Text] [Related]
19. The siderophore system is essential for viability of Aspergillus nidulans: functional analysis of two genes encoding l-ornithine N 5-monooxygenase (sidA) and a non-ribosomal peptide synthetase (sidC). Eisendle M; Oberegger H; Zadra I; Haas H Mol Microbiol; 2003 Jul; 49(2):359-75. PubMed ID: 12828635 [TBL] [Abstract][Full Text] [Related]
20. Repression of the acid ZrfA/ZrfB zinc-uptake system of Aspergillus fumigatus mediated by PacC under neutral, zinc-limiting conditions. Amich J; Leal F; Calera JA Int Microbiol; 2009 Mar; 12(1):39-47. PubMed ID: 19440982 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]