These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
364 related articles for article (PubMed ID: 19460466)
1. Effect of soft segment crystallization and hard segment physical crosslink on shape memory function in antibacterial segmented polyurethane ionomers. Zhu Y; Hu J; Yeung K Acta Biomater; 2009 Nov; 5(9):3346-57. PubMed ID: 19460466 [TBL] [Abstract][Full Text] [Related]
2. Properties of shape memory polyurethane used as a low-temperature thermoplastic biomedical orthotic material: influence of hard segment content. Meng Q; Hu J; Zhu Y J Biomater Sci Polym Ed; 2008; 19(11):1437-54. PubMed ID: 18973722 [TBL] [Abstract][Full Text] [Related]
3. A low-temperature thermoplastic anti-bacterial medical orthotic material made of shape memory polyurethane ionomer: influence of ionic group. Meng Q; Hu J; Liu B; Zhu Y J Biomater Sci Polym Ed; 2009; 20(2):199-218. PubMed ID: 19154670 [TBL] [Abstract][Full Text] [Related]
4. Effect of the hard segment chemistry and structure on the thermal and mechanical properties of novel biomedical segmented poly(esterurethanes). Caracciolo PC; Buffa F; Abraham GA J Mater Sci Mater Med; 2009 Jan; 20(1):145-55. PubMed ID: 18704646 [TBL] [Abstract][Full Text] [Related]
5. Synthesis and properties of biodegradable poly(ester-urethane)s based on poly(ε-caprolactone) and aliphatic diurethane diisocyanate for long-term implant application: effect of uniform-size hard segment content. Zhang L; Zhang C; Zhang W; Zhang H; Hou Z J Biomater Sci Polym Ed; 2019 Sep; 30(13):1212-1226. PubMed ID: 31140366 [TBL] [Abstract][Full Text] [Related]
6. Mechanically robust enzymatically degradable shape memory polyurethane urea with a rapid recovery response induced by NIR. Li X; Liu W; Li Y; Lan W; Zhao D; Wu H; Feng Y; He X; Li Z; Li J; Luo F; Tan H J Mater Chem B; 2020 Jun; 8(23):5117-5130. PubMed ID: 32412029 [TBL] [Abstract][Full Text] [Related]
7. Design of triple-shape memory polyurethane with photo-cross-linking of cinnamon groups. Wang L; Yang X; Chen H; Gong T; Li W; Yang G; Zhou S ACS Appl Mater Interfaces; 2013 Nov; 5(21):10520-8. PubMed ID: 24080202 [TBL] [Abstract][Full Text] [Related]
8. Synthesis and characterization of biodegradable acrylated polyurethane based on poly(ε-caprolactone) and 1,6-hexamethylene diisocyanate. Alishiri M; Shojaei A; Abdekhodaie MJ; Yeganeh H Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():763-73. PubMed ID: 25063178 [TBL] [Abstract][Full Text] [Related]
9. Artificial extracellular matrix for biomedical applications: biocompatible and biodegradable poly (tetramethylene ether) glycol/poly (ε-caprolactone diol)-based polyurethanes. Shahrousvand M; Mir Mohamad Sadeghi G; Salimi A J Biomater Sci Polym Ed; 2016 Dec; 27(17):1712-1728. PubMed ID: 27589493 [TBL] [Abstract][Full Text] [Related]
10. Poly(epsilon-caprolactone) polyurethane and its shape-memory property. Ping P; Wang W; Chen X; Jing X Biomacromolecules; 2005; 6(2):587-92. PubMed ID: 15762617 [TBL] [Abstract][Full Text] [Related]
11. Uncatalyzed synthesis, thermal and mechanical properties of polyurethanes based on poly(epsilon-caprolactone) and 1,4-butane diisocyanate with uniform hard segment. Heijkants RG; van Calck RV; van Tienen TG; de Groot JH; Buma P; Pennings AJ; Veth RP; Schouten AJ Biomaterials; 2005 Jul; 26(20):4219-28. PubMed ID: 15683644 [TBL] [Abstract][Full Text] [Related]
12. Synthesis of biocompatible segmented polyurethanes from aliphatic diisocyanates and diurea diol chain extenders. Guelcher SA; Gallagher KM; Didier JE; Klinedinst DB; Doctor JS; Goldstein AS; Wilkes GL; Beckman EJ; Hollinger JO Acta Biomater; 2005 Jul; 1(4):471-84. PubMed ID: 16701828 [TBL] [Abstract][Full Text] [Related]
13. Chemical and physical characterization of a novel poly(carbonate urea) urethane surface with protein crosslinker sites. Phaneuf MD; Quist WC; LoGerfo FW; Szycher M; Dempsey DJ; Bide MJ J Biomater Appl; 1997 Oct; 12(2):100-20. PubMed ID: 9399137 [TBL] [Abstract][Full Text] [Related]
14. Post-Crosslinked Polyurethanes with Excellent Shape Memory Property. Liu W; Zhao Y; Wang R; Li J; Li J; Luo F; Tan H; Fu Q Macromol Rapid Commun; 2017 Dec; 38(23):. PubMed ID: 29083102 [TBL] [Abstract][Full Text] [Related]
15. A new haemocompatible phospholipid polyurethane based on hydrogenated poly(isoprene) soft segment. Li YJ; Bahulekar R; Wang YF; Chen TM; Kitamura M; Kodama M; Nakaya T J Biomater Sci Polym Ed; 1996; 7(10):893-904. PubMed ID: 8836835 [TBL] [Abstract][Full Text] [Related]
16. Degradation studies on segmented polyurethanes prepared with HMDI, PCL and different chain extenders. Chan-Chan LH; Solis-Correa R; Vargas-Coronado RF; Cervantes-Uc JM; Cauich-Rodríguez JV; Quintana P; Bartolo-Pérez P Acta Biomater; 2010 Jun; 6(6):2035-44. PubMed ID: 20004749 [TBL] [Abstract][Full Text] [Related]
17. Bending shape memory behaviours of carbon fibre reinforced polyurethane-type shape memory polymer composites under relatively small deformation: Characterisation and computational simulation. Cheng X; Chen Y; Dai S; Bilek MMM; Bao S; Ye L J Mech Behav Biomed Mater; 2019 Dec; 100():103372. PubMed ID: 31369958 [TBL] [Abstract][Full Text] [Related]
18. Investigation of the effects of polycaprolactone molecular weight and graphene content on crystallinity, mechanical properties and shape memory behavior of polyurethane/graphene nanocomposites. Babaie A; Rezaei M; Sofla RLM J Mech Behav Biomed Mater; 2019 Aug; 96():53-68. PubMed ID: 31029995 [TBL] [Abstract][Full Text] [Related]
19. Synthesis and characterization of segmented polyurethanes based on amphiphilic polyether diols. Lan PN; Corneillie S; Schacht E; Davies M; Shard A Biomaterials; 1996 Dec; 17(23):2273-80. PubMed ID: 8968523 [TBL] [Abstract][Full Text] [Related]
20. Biodegradable shape-memory block co-polymers for fast self-expandable stents. Xue L; Dai S; Li Z Biomaterials; 2010 Nov; 31(32):8132-40. PubMed ID: 20723973 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]