These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 19461683)

  • 1. Energy storage in superluminal barrier tunneling: Origin of the Hartman effect.
    Winful H
    Opt Express; 2002 Dec; 10(25):1491-6. PubMed ID: 19461683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Group delay, stored energy, and the tunneling of evanescent electromagnetic waves.
    Winful HG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jul; 68(1 Pt 2):016615. PubMed ID: 12935278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Apparent superluminality and the generalized Hartman effect in double-barrier tunneling.
    Winful HG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Oct; 72(4 Pt 2):046608. PubMed ID: 16383555
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Delay time and the hartman effect in quantum tunneling.
    Winful HG
    Phys Rev Lett; 2003 Dec; 91(26 Pt 1):260401. PubMed ID: 14754030
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurement of superluminal optical tunneling times in double-barrier photonic band gaps.
    Longhi S; Laporta P; Belmonte M; Recami E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Apr; 65(4 Pt 2B):046610. PubMed ID: 12006050
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time diffraction of evanescent waves.
    Xiao M
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Nov; 60(5 Pt B):6226-9. PubMed ID: 11970540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Group delay time and Hartman effect in strained Weyl semimetals.
    Xu Z; Siu ZB; Chen Y; Huang J; Li Y; Sun C; Yesilyurt C; Jalil MBA
    J Phys Condens Matter; 2020 Jan; 32(3):035301. PubMed ID: 31536971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-local energy transport in tunneling and plasmonic structures.
    Frias W; Smolyakov A; Hirose A
    Opt Express; 2011 Aug; 19(16):15281-96. PubMed ID: 21934892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nature of "superluminal" barrier tunneling.
    Winful HG
    Phys Rev Lett; 2003 Jan; 90(2):023901. PubMed ID: 12570546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lateral shifts and photon tunneling in a frustrated total internal reflection structure with a negative-zero-positive index metamaterial.
    Wang X; Shen M; Jiang A; Zheng F
    Opt Lett; 2013 Oct; 38(19):3949-52. PubMed ID: 24081096
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measuring optical tunneling times using a Hong-Ou-Mandel interferometer.
    Papoular DJ; Cladé P; Polyakov SV; McCormick CF; Migdall AL; Lett PD
    Opt Express; 2008 Sep; 16(20):16005-12. PubMed ID: 18825239
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Observation of superluminal behaviors in wave propagation.
    Mugnai D; Ranfagni A; Ruggeri R
    Phys Rev Lett; 2000 May; 84(21):4830-3. PubMed ID: 10990809
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Superluminal advanced transmission of X waves undergoing frustrated total internal reflection: the evanescent fields and the Goos-Hänchen effect.
    Shaarawi AM; Tawfik BH; Besieris IM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Oct; 66(4 Pt 2):046626. PubMed ID: 12443368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Superluminal optical pulse propagation at 1.5 microm in periodic fiber Bragg gratings.
    Longhi S; Marano M; Laporta P; Belmonte M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 2):055602. PubMed ID: 11736006
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Delay times and detector times for optical pulses traversing plasmas and negative refractive media.
    Nanda L; Basu A; Ramakrishna SA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Sep; 74(3 Pt 2):036601. PubMed ID: 17025758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superluminal propagation of light pulses: A result of interference.
    Wang LG; Liu NH; Lin Q; Zhu SY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Dec; 68(6 Pt 2):066606. PubMed ID: 14754335
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optics (communication arising): mechanism for 'superluminal' tunnelling.
    Winful HG
    Nature; 2003 Aug; 424(6949):638; discussion 638. PubMed ID: 12904782
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-photon propagation through dielectric bandgaps.
    Borjemscaia N; Polyakov SV; Lett PD; Migdall A
    Opt Express; 2010 Feb; 18(3):2279-86. PubMed ID: 20174056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Group velocity, energy velocity, and superluminal propagation in finite photonic band-gap structures.
    D'Aguanno G; Centini M; Scalora M; Sibilia C; Bloemer MJ; Bowden CM; Haus JW; Bertolotti M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Mar; 63(3 Pt 2):036610. PubMed ID: 11308791
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hartman effect for spin waves in exchange regime.
    Kłos JW; Dadoenkova YS; Rychły J; Dadoenkova NN; Lyubchanskii IL; Barnaś J
    Sci Rep; 2018 Dec; 8(1):17944. PubMed ID: 30560864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.