These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 19461755)

  • 1. Resonant optical transmission through thin metallic films with and without holes.
    Bonod N; Enoch S; Li L; Evgeny P; Neviere M
    Opt Express; 2003 Mar; 11(5):482-90. PubMed ID: 19461755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analytical model of the optical response of periodically structured metallic films.
    Benabbas A; Halté V; Bigot JY
    Opt Express; 2005 Oct; 13(22):8730-45. PubMed ID: 19498906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical transmission of planar metallic films coated by two-dimensional colloidal crystals.
    Lu H; Tang C; Du W; Liu F; Xing Y; Zhan P; Chen Z; Wang Z
    Opt Express; 2014 May; 22(10):11698-706. PubMed ID: 24921292
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transmission of light through a periodic array of slits in a thick metallic film.
    Xie Y; Zakharian A; Moloney J; Mansuripur M
    Opt Express; 2005 Jun; 13(12):4485-91. PubMed ID: 19495363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical properties of a nanosized hole in a thin metallic film.
    Park TH; Mirin N; Lassiter JB; Nehl CL; Halas NJ; Nordlander P
    ACS Nano; 2008 Jan; 2(1):25-32. PubMed ID: 19206544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Color filters based on enhanced optical transmission of subwavelength-structured metallic film for multicolor organic light-emitting diode display.
    Hu X; Zhan L; Xia Y
    Appl Opt; 2008 Aug; 47(23):4275-9. PubMed ID: 18690270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transmission through single subwavelength apertures in thin metal films and effects of surface plasmons.
    Vallius T; Turunen J; Mansuripur M; Honkanen S
    J Opt Soc Am A Opt Image Sci Vis; 2004 Mar; 21(3):456-63. PubMed ID: 15005412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dichroic Optical Diode Transmission in Two Dislocated Parallel Metallic Gratings.
    Xu P; Lv X; Chen J; Li Y; Qian J; Chen Z; Qi J; Sun Q; Xu J
    Nanoscale Res Lett; 2018 Dec; 13(1):392. PubMed ID: 30515587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theory of transmission of light by sub-wavelength cylindrical holes in metallic films.
    García N; Bai M
    Opt Express; 2006 Oct; 14(21):10028-42. PubMed ID: 19529397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extraordinary optical transmission in nanopatterned ultrathin metal films without holes.
    Peer A; Biswas R
    Nanoscale; 2016 Feb; 8(8):4657-66. PubMed ID: 26853881
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resonant infrared transmission through SiC films.
    Marquier F; Joulain K; Greffet JJ
    Opt Lett; 2004 Sep; 29(18):2178-80. PubMed ID: 15460894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extraordinary optical transmission through hole arrays in optically thin metal films.
    Rodrigo SG; Martín-Moreno L; Nikitin AY; Kats AV; Spevak IS; García-Vidal FJ
    Opt Lett; 2009 Jan; 34(1):4-6. PubMed ID: 19109621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental verification of enhanced transmission through two-dimensionally corrugated metallic films without holes.
    Bai B; Li L; Zeng L
    Opt Lett; 2005 Sep; 30(18):2360-2. PubMed ID: 16196319
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resonant optical transmission through topologically continuous films.
    Ai B; Yu Y; Möhwald H; Wang L; Zhang G
    ACS Nano; 2014 Feb; 8(2):1566-75. PubMed ID: 24397775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Observation of localized surface plasmons and hybridized surface plasmon polaritons on self-assembled two-dimensional nanocavities.
    Xiong Q; Wei J; Mahpeykar SM; Meng L; Wang X
    Opt Lett; 2016 Apr; 41(7):1506-9. PubMed ID: 27192273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tuning the extraordinary optical transmission through subwavelength hole array by applying a magnetic field.
    Battula A; Chen S; Lu Y; Knize RJ; Reinhardt K
    Opt Lett; 2007 Sep; 32(18):2692-4. PubMed ID: 17873937
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmonic control of extraordinary optical transmission in the infrared regime.
    Sangiao S; Freire F; de León-Pérez F; Rodrigo SG; De Teresa JM
    Nanotechnology; 2016 Dec; 27(50):505202. PubMed ID: 27841162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extraordinary optical transmission in silicon nanoholes.
    Mekawey H; Ismail Y; Swillam M
    Sci Rep; 2021 Nov; 11(1):21546. PubMed ID: 34732796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced and suppressed infrared transmission through germanium subwavelength arrays.
    Dong W; Hirohata T; Nakajima K; Wang X
    Opt Express; 2013 Nov; 21(23):28513-22. PubMed ID: 24514363
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmonic Bragg reflectors for enhanced extraordinary optical transmission through nano-hole arrays in a gold film.
    Gordon R; Marthandam P
    Opt Express; 2007 Oct; 15(20):12995-3002. PubMed ID: 19550569
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.